LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Camus, Lionel; Gulliksen, Bjørn; Depledge, Michael H.; Jones, Malcolm B. (2005)
Publisher: Co-Action Publishing
Journal: Polar Research
Languages: English
Types: Article
Subjects:
Inevitably, aerobic life leads to the formation of deleterious reactive oxygen species (ROS) which participate in biomolecule oxidation, hence augmenting biomolecule turnover. Organisms have adapted to counteract the noxious effects of ROS by developing a battery of antioxidant defences (AOX) which comprise enzymes and low-molecular weight scavengers. Past studies have reported elevated AOX levels in polar pectinid bivalves compared with temperate congeners. This fi nding is controversial as mitochondrial ROS generation is low in polar versus temperate species, and, to date, there is no generally accepted explanation of the causes of increased basal AOX levels in polar waters. We suggest that the low food availability in those ecosystems may result in polar marine ectotherms diverting some energy into the maintenance of high AOX. We tested this hypothesis by comparing the total oxyradical scavenging capacity (peroxyl, hydroxyl and peroxynitrite) of three clam species: Laternula elliptica (Antarctic), Mya truncata (Arctic) and Mya arenaria (temperate). The data confi rmed that polar bivalves are characterized by higher AOX. Herein, we propose that high AOX is required in environments characterized by low food availability as AOX effi ciently protects biomolecules, notably the RNA expressed at high levels by cold-water ectotherms. Also, high AOX may explain the relatively long lifespan of most polar ectotherms.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Abele, D., Heise, K., Pörtner, H. O. & Puntarulo, S. 2002: Temperature dependence of mitochondrial function and production of reactive oxygen species in the intertidal mud clam Mya arenaria. J. Exp. Biol. 205, 1831-1841.
    • Ahn, I.-Y., Cho, K. W., Choi, K.-S., Seo, Y. & Shin J. 2000: branch, Laternula elliptica (King and Broderip) (Anomalodesmata: Laternulidae), in King George Island during an austral summer. Polar Biol. 23, 24-33.
    • Bluhm, B. A., Thomas, B., Klages, M. & Arntz, W. E. 2001: Occurrence of the autofluorescent pigment, lipofuscin, in polar crustaceans and its potential as an age marker. Polar Biol. 24, 642-649.
    • Bradford, M. M. 1976: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254.
    • Clarke, A. 1991: What is cold adaptation and how should we measure it? Am. Zool. 31, 81-92.
    • Clarke, A. 1993: Seasonal acclimatization and latitudinal compensation in metabolism: do they exist? Funct. Ecol. 7, 139-149.
    • Clarke, A. 2003: Costs and consequences of evolutionary temperature adaptation. Trends Ecol. Evol. 18(1), 573-581.
    • DiGiulio, R. T., Washburn, P. C., Wenning, R. J., Winston, G. W. & Jewell, C. S. 1989: Biochemical responses in aquatic animals: a review of determinants of oxidative stress. Environ. Toxicol. Chem. 8, 1103-1123.
    • Dunlap, W. C., Fujisawa, A., Yamamoto, Y., Moylan, T. J. & Sidell, B. D. 2002: Notothenioid fish, krill and phytoplankton from Antarctica contain a vitamin E constituent (α-tocomonoenol) functionally associated with cold-water adaptation. Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 133, 299-305.
    • El-Sayed, S. Z. 1984: Productivity of Antarctic waters-a reappraisal. In O. Holm-Hansen et al. (eds.): Marine phytoplankton and productivity. Lecture notes on coastal and estuarine studies. Vol. 8. Pp. 19-34. Berlin: Springer.
    • Estevez, M. S., Abele, D. & Puntarulo, S. 2002: Lipid radical generation in polar (Laternula elliptica) and temperate (Mya arenaria) bivalves. Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 132, 729-737.
    • Fraser, K. P., Clarke, A. & Peck, L. S. 2002: Low-temperature protein metabolism: seasonal changes in protein synthesis and RNA dynamics in the Antarctic limpet Nacella concinna Strebel (1908). J. Exp. Biol. 205, 3077-3086.
    • Gieseg, S. P., Cuddihy, S. Jonathan, V. H. & Davison, W. 2000: A comparison of plasma vitamin C and E levels in two Antarctic and two temperate water fish species. Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 125, 371-378.
    • Gillis, T. E. & Ballantyne, J. S. 1999: Mitochondrial membrane composition of two arctic marine bivalve molluscs, Serripes groelandicus and Mya truncata. Lipids 34, 53-57.
    • Hawkins, A. J. S. 1991: Protein-turnover-a functional appraisal. Funct. Ecol. 5, 222-233.
    • Heise, K., Puntarulo, S., Pörtner, H. O. & Abele D. 2003: Production of reactive oxygen species by isolated mitochondria of the Antarctic bivalve Laternula elliptica (King and Broderip) under heat stress. Comp. Biochem. Physiol. C, Toxicol. Pharmacol. 134, 79-90.
    • Hofmann, G. E. & Somero, G. N. 1995: Evidence for protein damage at environmental temperatures: seasonal changes in levels of ubiquitin conjugates and hsp70 in the intertidal mussel Mytilus trossolus. J. Exp. Biol. 198, 1509-1518.
    • Janssens, B. J., Childress, J. J., Baguet, F. & Rees, J. F. 2000: Reduced enzymatic antioxidative defence in deep-sea fish. J. Exp. Biol. 203, 3717-3725.
    • Johnston, I. A., Calvo, J., Guderley, H., Fernandez, D. & Palmer, L. 1998: Latitudinal variation in the abundance and oxidative capacities of muscle mitochondria in perciform fishes. J. Exp. Biol. 201, 1-12.
    • Koizumi, A., Tsukada, M., Wada, Y., Masuda, H. & Weindruch, R. 1992: Mitotic activity in mice is suppressed by energy restriction-induced torpor J. Nutr. 122, 1446-1453.
    • Ku, H. H., Brunk, U. T. & Sohal, R. S. 1993: Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammalian species. Free Radic. Biol. Med. 15, 621-627.
    • Marsh, A.G., Maxson, Jr. R. E. & Manahan, D. T. 2001: High macromolecular synthesis with low metabolic cost in Antarctic sea urchin embryos. Science 291, 1950-1952.
    • Nolan, C. P. & Clarke, A. 1993: Growth in the bivalve Yoldiaeightsi at Signy Island, Antarctica determined from internal shell increments and Ca 45 incorporation. Mar. Biol. 117, 243-250.
    • Orr, W. C. & Sohal, R. S. 1994: Extension of life span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263, 1128-1130.
    • Peck, L. S. & Bullough, L. W. 1993: Growth and population structure in the infaunal bivalve Yoldia eightsi in relation to iceberg activity at Signy island, Antarctica. Mar. Biol. 117, 235-241.
    • Regoli, F., Nigro, M., Bompadre, S. & Winston, G. 2000: Total oxidant scavenging capacity (TOSC) of microsomal and cytosolic fractions from Antarctic, Arctic and Mediterranean scallops: differentiation between three potent oxidants. Aquat. Toxicol. 49, 13-25.
    • Regoli, F., Nigro, M., Chiantore, M., Gorbi, S. & Winston, G. 2000: Total oxidant scavenging capacity of Antarctic, Arctic, and Mediterranean scallops. Ital. J. Zool. 67, 85- 94.
    • Regoli, F., Principato, G. B., Bertoli, E., Nigro, M. & Orlando, E. 1997: Biochemical characterization of the antioxidant system in the scallop Adamussium colbecki, a sentinel organism for monitoring the Antarctic environment. Polar Biol. 17, 251-258.
    • Regoli, F. & Winston, G. W. 1999: Quantification of total oxidant scavenging capacity of antioxidants for peroxynitrite, peroxyl radicals and hydroxyl radicals. Toxicol. Appl. Pharmacol. 156, 96-105.
    • Schulz, A., Rex, M., Harris, N. R. P., Braathern, G. O., Reimer, E., Alfier, R., Kilbane-Dawe, I., Eckermann, S., Allaart, M., Alpers, M., Bojkov, B., Cisneros, J., Claude, H., Cuevas, E., Davies, J., De Backer, H., Dier, H., Dorokhov, V., Fast, H., Godin, S., Johnson, B., Kois, B., Kondo, Y., Kosmidis, E., Kyro, E., Litynska, Z., Mikkelsen, I. S., Molyneux, M. J., Murphy, G., Nagai, T., Nakane, H., O'Connor, F., Parrondo, C., Schmidlin, F. J., Skrivankova, P., Varotsos, C., Vialle, C., Viatte, P., Yushkov, V., Zerefos, C. & von der Gathen, P. 2001: Arctic ozone loss in threshold conditions: match observations in 1997/1998 and 1998/1999. J. Geophys. Res. 106(D7), 7495-7503.
    • Sies, H. 1985: Oxidative stress: introductory remarks. In H. Sies (ed.): Oxidative stress. Pp. 1-8. New York: Academic Press, Harcourt Brace Jovanovich Publishers.
    • Sohal, R. S., Mockett, R. J. & Orr, W. C. 2002: Mechanism of aging: an appraisal of the oxidative stress hypothesis. Free Radic. Biol. Med. 33, 575-586.
    • Stolarski, R., Bojkov, R., Bishop, L., Zerefos, C., Staehelin, J. & Zawodny, J. 1992: Measured trends in ozone. Science 256, 342-349.
    • Storch, D., Heilmayer, O., Hardewig, I. & Pörtner, H. O. 2003: In vitro protein synthesis capacities in a cold stenothermal and a temperate eurythermal pectinid. Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 173, 611-620.
    • Storch, D. & Pörtner, H. O. 2003: The protein synthesis machinery operates at the same expense in eurythermal and cold stenothermal pectinids. Physiol. Biochem. Zool. 76, 28-40.
    • Urban, H. J. & Mercuri, G. 1998: Population dynamics of the bivalve Laternula elliptica from Potter Cove, King George Island, South Shetland Islands. Antarct. Sci. 10, 153-160.
    • Viarengo, A., Abele-Oeschger, D. & Burlando, B. 1998: Effects of low temperature on prooxidant processes and antioxidant defence systems in marine organisms. In H. O. Pörtner & R. C. Playle (eds.): Cold ocean physiology. Soc. Exp. Biol. Semin. Ser. 66, 212-238.
    • Viarengo, A., Accomando, R., Roma, G., Benatti, U., Damonte, G. & Orunesu, M. 1994: Differences in lipid-composition of cell-membranes from Antarctic and Mediterranean scallops. Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 109, 579-584.
    • Viarengo, A., Canesi, L., Garcia Martinez, P., Peters, L. D. & Livingstone, D. R. 1995: Pro-oxidant processes and antioxidant defence systems in the tissues of the Antarctic scallop (Adamussium colbecki) compared with the Mediterranean scallop (Pecten jacobeus). Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 111, 119-126.
    • Weslawski, J. M., Zajaczkowski, M., Kwasniewski, S., Jezierski, J. & Moskal, W. 1988: Seasonality in an Arctic fjord ecosystem: Hornsund, Spitsbergen. Polar Res. 6, 185-189.
    • Winston, G. W. & DiGiulio, R. T. 1991: Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat. Toxicol. 19, 137-191.
    • Winston, G. W., Regoli, F., Dugas, A. J., Fong, J. H. & Blanchard, K. A. 1998: A rapid gas chromatographic assay for determining oxyradical scavenging capacity of antioxidants and biological fluids. Free Radic. Biol. Med. 24, 480- 493.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from