LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Denning, A. Scott; Holzer, Mark; Gurney, Kevin R.; Heimann, Martin; Law, Rachel M.; Rayner, Peter J.; Fung, Inez Y.; Fan, Song-Miao; Taguchi, Shoichi; Friedlingstein, Pierre; Balkanski, Yves; Taylor, John; Maiss, Manfred; Levin, Ingeborg (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects:
Sulfur hexafluoride (SF6) is an excellent tracer of large-scale atmospheric transport, because it has slowly increasing sources mostly confined to northern midlatitudes, and has a lifetime of thousands of years. We have simulated the emissions, transport, and concentration of SF6 for a 5-year period, and compared the results with atmospheric observations. In addition, we have performed an intercomparison of interhemispheric transport among 11 models to investigate the reasons for the differences among the simulations. Most of the models are reasonably successful at simulating the observed meridional gradient of SF6 in the remote marine boundary layer, though there is less agreement at continental sites. Models that compare well to observations in the remote marine boundary layer tend to systematically overestimate SF6 at continental locations in source regions, suggesting that vertical trapping rather than meridional transport may be a dominant control on the simulated meridional gradient. The vertical structure of simulated SF6 in the models supports this interpretation. Some of the models perform quite well in terms of the simulated seasonal cycle at remote locations, while others do not. Interhemispheric exchange time varies by a factor of 2 when estimated from 1-dimensional meridional profiles at the surface, as has been done for observations. The agreement among models is better when the global surface mean mole fraction is used, and better still when the full 3-dimensional mean mixing ratio is used. The ranking of the interhemispheric exchange time among the models is not sensitive to the change from station values to surface means, but is very sensitive to the change from surface means to the full 3-dimensional tracer fields. This strengthens the argument that vertical redistribution dominates over interhemispheric transport in determining the meridional gradient at the surface. Vertically integrated meridional transport in the models is divided roughly equally into transport by the mean motion, the standing eddies, and the transient eddies. The vertically integrated mass flux is a good index of the degree to which resolved advection vs. parameterized diffusion accomplishes the meridional transport of SF6. Observational programs could provide a much better constraint on simulated chemical tracer transport if they included regular sampling of vertical profiles of nonreactive trace gases over source regions and meridional profiles in the middle to upper troposphere. Further analysis of the SF6simulations will focus on the subgrid-scale parameterized transports.DOI: 10.1034/j.1600-0889.1999.00012.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Boer, G. J., 1982. Diagnostic equations in isobaric coordinates. Mon. Weather Rev. 110, 1801-1820.
    • Bousquet, P., Ciais, P., Monfray, P., Balkanski, Y., Ramonet, M. and Tans, P. 1996. Influence of two atmospheric transport models on inferring sources and sinks of atmospheric CO2. T ellus 48B, 568-582.
    • Ciais, P., Tans, P. P., Trolier, M., White, J. W. C. and Francey, R. J. 1995. A large northern hemisphere terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2 . Science 269, 1098-1102.
    • Crutzen, P. J., Elansky, N. F., Hahn, M., Golitsyn, G. S., Brenninkmeijer, C. A. M., ScharVe, D. H., Berlikov, I. B., Maiss, M., Bergamaschi, P., Roeckmann, T., Grisenko, A. M. and Sevostyanov, V. M. 1998. Trace gas measurements between Moscow and Vladivostok using the Trans-Siberian Railroad, J. Atmos. Chem. 29, 179-194.
    • Czeplak, G. and C. Junge, 1974: Studies of interhemispheric exchange in the troposphere by a diVusion model. Adv. Geophys. 18B, 57-72.
    • DelGenio, A. D. and M.-S. Yao (1993): EYcient cumulus parameterization for long-term climate studies: The GISS scheme. In Representation of cumulus convection in numerical models (K. A. Emanuel and D. A. Raumopnd, eds.). AMS Meteor, Monograph 24, no. 46, pp. 181-184. American Meteorological Society.
    • DelGenio, A. D., M.-S. Yao, W. Kovari and K. K.-W. Lo (1996): A prognostic cloud water parameterization for global climate models. J. Clim. 9, 270-304.
    • Denning, A. S., Fung, I. Y., and Randall, D. A. 1995. Latitudinal gradient of atmospheric CO2 due to seasonal exchange with land biota. Nature 376, 240-243.
    • Denning, A. S., J. G. Collatz, C. Zhang, D. A. Randall, J. A. Berry, P. J. Sellers, G. D. Colello and D. A. Dazlich, 1996a. Simulations of terrestrial carbon metabolism and atmospheric CO2 in a general circulation model. Part 1: Surface carbon fluxes. T ellus 48B, 521-542.
    • Denning, A. S., Randall, D. A., Collatz, G. J., and Sellers, P. J. 1996b. Simulations of terrestrial carbon metabolism and atmospheric CO2 in a general circulation model. Part 2: Spatial and temporal variations of atmospheric CO2 . T ellus 48B, 543-567.
    • Enting, I. G., Trudinger, C. M., and Francey, R. J. 1995. A synthesis inversion of the concentration and d13C of atmospheric CO2. T ellus 47B, 35-52.
    • Feichter, J. and Crutzen, P. J. 1990. Parameterization of vertical tracer transport due to deep convection and its evaluation with 222Radon measurements. T ellus 42B, 100-117.
    • Fowler, L. A., Randall, D. A. and Rutledge, S. A., 1996. Liquid and ice cloud microphysics in the CSU General Circulation Model. Part I: Model description and simulated microphysical processes. J. Clim 9, 489-529.
    • Fung, I., Prentice, K., Matthews, E., Lerner, J. and Russell, G. 1983. Three-dimensional tracer model study of atmospheric CO2: Response to seasonal exchanges with the terrestrial biosphere. J. Geophys. Res. 88, 1281-1294.
    • Geller, L. S., Elkins, J. W., Lobert, J. M., Clarke, A. D., Hurst, D. F., Butler, J. H. and Myers, R. C. 1997. Tropospheric SF6: Observed latitudinal distribution and trends, derived emissions and interhemispheric exchange time. Geophys. Res. L ett. 24, 675-678.
    • Hamilton, K., Wilson, R. J., Mahlman, J. D., and Umscheid, L. J. 1995. Climatology of the SKYHI troposphere-stratosphere-mesosphere general circulation model. J. Atmos. Sci. 52, 5-43,
    • Hansen, J., Russell, G., Rind, D., Stone, P., Lacis, A., LebedeV, S., Ruedy, R. and Travis, L. (1983). EYcient three-dimensional global models for climate studies: Models I and II. Mon. Wea. Rev. 111, 609-662.
    • Hansen, J., Sato, M., Ruedy, R., Lacis, A., Asamoth, K., Borenstein, S., Brown, E., Cairns, B., Caliri, G., Campbell, M., Curran, B., de Castro, S., Druyan, L., Fox, M., Johnson, C., Lerner, J., McCormick, M. P., Miller, R., Minnis, P., Morrison A., Pandolfo, L., Ramberran, I., Zaucker, F., Robinson, M., Ruseell, P., Shah, K., Stone, P., Tegen, I., Thomason, L., Wilder, J. and Wilson, H. (1996). A Pinatubo climate modeling investigation. In T he Mount Pinatubo eruption eVects on the atmosphere and climate (G. Fiocco, D. Fua and G. Visconti. eds.) NASO ASI Series, vol. I, 42, pp. 233-272. Springer-Verlag, Heidelberg, Germany.
    • Harnisch, J., Borchers, R., Fabian, P. and Maiss, M. 1996. Tropospheric trends of CF4 and C2F6 since 1982 derived from SF6 dated stratospheric air. Geophys. Res. L ett. 23, 1099.
    • Hartke, G. J. and D. Rind (1997). Improved surface and boundary layer models for the Goddard Institute for Space Studies general circulation model. J. Geophys. Res. 102, 16407-16442.
    • Hartley, D., Williamson, D. L., Rasch, P. J. and Prinn, R., 1994. Examination of tracer transport in the NCAR CCM2 by comparison of CFCl3 simulations with ALE/GAGE observations. J. Geophys. Res. 99, 12885-12896.
    • Heimann, M., Keeling, C. D. and Fung, I. Y. 1986. Simulating the atmospheric carbon dioxide distribution with a three-dimensional tracer model. In: T he changing carbon cycle: a global analysis, (eds Trabalka, J. R. and Reichle, D. E.). Springer-Verlag, New York, 16-49.
    • Heimann, M. and Keeling, C. D. 1989. A threedimensional model of atmospheric CO2 transport based on observed winds: 2. Model description and simulated tracer experiments. In: Aspects of climate variability in the Pacific and Western Americas (ed. Peterson, D. H.). Geophysical Monograph 55, American Geophysical Union, Washington, DC, 237-275.
    • Heimann, M. 1995. T he T M2 T racer Model, Model Description and User Manual. Technical Report, No. 10, ISSN 0940-9327, Deutsches Klimarechenzentrum, Hamburg, 47 pp.
    • Holzer, M., 1999. Analysis of passive tracer transport as modelled by an atmospheric general circulation model. Jour. Clim., in press.
    • Hurst, D. F., Bakwin, P. S., Myers, R. C. and Elkins, J. W. 1997. Behavior of trace gas mixing ratios on a very tall tower in North Carolina. J. Geophys. Res. 102, 8825-8835.
    • Jacob, D. J., Prather, M. J., Wofsy, S. C. and McElroy, M. B. 1987: Atmospheric distribution of 85Kr simulated with a general circulation model. J. Geophys. Res. 92, 6614-6626.
    • Jacob, D. J. and Prather, M. J., 1990. Radon-222 as a test of boundary-layer convection in a general circulation model. T ellus 42B, 118-134.
    • Jacob, D. J., Prather, M. J., Rasch, P. J., Shia, R.-L., Balkanski, Y. J., Beagley, S. R., Bergmann, D. J., Blackshear, M. B., Chiba, M., Chipperfield, J. d G., Dignon, J. E., Feichter, J., Genthon, C., Grose, W. L., Khasibatla, P. S., Kohler, I., Kritz, M., Law, K., Penner, J. E., Ramonet, M., Reeves, C. E., Rotman, D. A., Stockwell, D. Z., van Velthoven, P. F. J., Verver, G., Wild, O., Yang, H. and Zimmerman, P. 1997. Evaluation and intercomparison of global atmospheric transport models using 222Rn and other short-lived tracers. J. Geophys. Res. 102, 5953-5970.
    • Kasibhatla, P. S., Levy II, H. and Moxim, W. J., 1993. Global NOx, HNO3 , PAN and NO distributions from fossil-fuel combustion emissions: A model study, J. Geophys. Res. 98, 7165-7180
    • Law, R. M., Simmonds, L. and Budd, A. 1992. Application of an atmospheric tracer model to the high southern latitudes. T ellus 44B, 358-370,
    • Law, R. M., Rayner, P. J., Denning, A. S., Erickson, D., Heimann, M., Piper, S. C., Ramonet, M., Taguchi, S., Taylor, J. A., Trudinger, C. M. and Watterson, I. G. 1996. Variations in modelled atmospheric transport of carbon dioxide and the consequences for CO2 inversions Global Biogeochem. Cycles 10, 783-796.
    • Levin, I. and Hesshaimer, V. 1996. Refining of atmospheric transport model entries by the globally observed passive tracer distributions of 85Kr and sulfur hexafluoride (SF6). J. Geophys. Res. 101, 16745-16755.
    • Levy II, H, Mahlman, J. D. and Moxim, W. J. 1982. Tropospheric N2O variability. J. Geophys. Res. 87, 3061-3080.
    • Levy II, H. and W.J. Moxim, Fate of US and Canadian combustion nitrogen emissions. Nature 328, 414-416, 1987.
    • Louis, J. F., 1979. A parametric model of vertical eddy fluxes in the atmosphere. Boundary L ayer Meteorol. 17, 187-202.
    • Mahlman, J. D., and Moxim, W. J. 1978. Tracer simulation using a global general circulation model: results from a midlatitude instantaneous source experiment, J. of the Atmos. Sci. 35, 1340-1374,
    • Mahlman, J. D. and L. J. Umscheid, 1984. Dynamics of the middle atmosphere: Successes and problems of the GFDL ''SKYHI'' general circulation models. In: Dynamics of the Middle Atmosphere (eds Holton, J. R. and Matsuno, T.). T erra Scientific, pp. 501-525,
    • Mahlman, J. D., Pinto, J. P. and Umscheid, L. J. 1994. Transport, radiative, and dynamical eVects of the Antarctic ozone hole: A GFDL ''SKYHI'' model experiment. J. Atmos. Sci. 51, 489-508
    • Mahowald, N. M., Rasch, P. J. and Prinn, R. G. 1995. Cumulus parameterizations in chemical transport models. J. Geophys. Res. 100, 26173-16190.
    • Maiss, M. and Levin, I. 1994. Global increase of SF6 observed in the atmosphere. Geophys. Res. L ett. 21, 569-572.
    • Maiss, M., Steele, L. P., Francey, R. J., Fraser, P. J., Langenfelds, R. L., Trivett, N. B. A. and Levin, I. 1996. Sulfur hexafluoride - a powerful new atmospheric tracer. Atmos. Environ. 30, 1621-1629.
    • McFarlane, N. A., Boer, G. J., Blanchet, J. P. and Lazare, M. 1992. The Canadian Climate Centre second generation general circulation model and its equilibrium climate. J. Clim. 5, 1013-1044.
    • Patra, P. K., Lal, S., Subbaraya, B. H., Jackman, C. H. and Rajaratnam, P. 1997. Observed vertical profile of sulfur hexafluoride (SF6) and its atmospheric applications. J. Geophys. Res. 102, 8855-8859.
    • Plumb, R. A. and D. D. McConalogue, 1988: On the meridional structure of long-lived tropospheric constituents. J. Geophys. Res. 93, 15897-15913.
    • Prather, M., McElroy, M., Wofsy, S., Russel, G. and Rind, D. 1987. Chemistry of the global troposphere: Fluorocarbons as tracers of air motion. J. Geophys. Res. 92, 6579-6613.
    • Pyle, J. and Prather, M. (eds.) 1996. Global tracer transport models. Report of a Scientific Symposium, World Climate Research Programme, Report No. 24. 186 pp.
    • Randall, D. A., Shao, Q. and Moeng, C.-H. 1992. A second-order bulk boundary-layer model. J. Atmos. Sci. 49, 1903-1923.
    • Randall, D. A. and Pan, D.-M., 1993. Implementation of the Arakawa-Schubert parameterization with a prognostic closure. In: T he Representation of Cumulus Convection in Numerical Models (eds Emanuel, K. and Raymond, D.). American Meteorological Society, Boston, 137-144.
    • Randall, D. R., Sellers, P. J., Berry, J. A., Dazlich, D. A., Zhang, C., Collatz, J. A., Denning, A. S., Los, S. O., Field, C. B., Fung, I., Justice, C. O. and Tucker, C. J. 1996. A revised land-surface parameterization (SiB2) for GCMs. Part 3: The greening of the Colorado State University General Circulation Model. J. Clim. 9, 738-763.
    • Ravishankara, A. R., Solomon, S., Turnispeed, A. A. and Warren, R. F., 1993. Atmospheric lifetimes of longlived halogenated species. Science 259, 194-199.
    • Rayner, P. J. and Law, R. M. 1995. A comparison of modelled responses to prescribed CO2 sources. CSIRO Division of Atmospheric Research Technical Paper No. 36. 84 pp.
    • Russell, G. and Lerner, J. (1981). A new finite diVerence scheme for tracer transport equation. J. Appl. Meteor. 20, 1485-1498.
    • Sellers, P. J., Randall, D. A., Collatz, G. J., Berry, J. A., Field, C. B., Dazlich, D. A., Zhang, C., Collelo, G. D. and Bounoua, L. 1996, A Revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation. J. Clim. 9, 676-705.
    • Suarez, M. J., Arakawa, A. and Randall, D. A. 1983. Parameterization of the planetary boundary layer in the UCLA general circulation model: Formulation and results. Mon Wea. Rev 111, 2224-2243.
    • Taguchi, S. 1996. A three-dimensional model of atmospheric CO2 transport based on analyzed winds: model description and simulation results for TRANSCOM. J. Geophys. Res. 101, 15099-15109.
    • Tans, P. P., Fung, I. Y. and Takahashi, T. 1990. Observational constraints on the global atmospheric CO2 budget. Science 247,1431-1438.
    • Taylor, J. A., 1989. A stochastic Lagrangian atmospheric transport model to determine global CO2 sources and sinks - a preliminary study. T ellus 41B, 272-285
    • Tiedke, M., 1989. A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Weather. Rev. 117, 1779-1800.
    • Tobler, W. 1995. Population database of the Consortium for International Earth Science Information Network (CIESIN) and the Environmental Systems Research Institute, Inc. (ESRI), through the National Center for Geographic Information and Analysis, Dept. of Geography, Univ. of California, Santa Barbara, CA. NCGIA Technical Report TR-95-6
    • United Nations, 1994. 1992 Energy Statistics Yearbook. United Nations Publication Sales No. E/F.94.XVII.9, Department for Economic and Social Information and Policy Analysis, Statistical Division, New York.
    • Weiss, W., Sittkus, A., Stockburger, H. and Sartorius, H. 1983: Large-scale atmospheric mixing derived from meridional profiles of Krypton 85. J. Geophys. Res. 88, 8574-8578.
    • WMO, 1995. Scientific assessment of ozone depletion: 1994. Rep. 37, Global Ozone Res, and Monit. Project, Geneva.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from