Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Wang, Gehui; Kawamura, Kimitaka; Xie, Mingjie; Hu, Shuyuan; Li, Jianjun; Zhou, Bianhong; Cao, Junji; An, Zhisheng (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Primary (i.e. sugars and sugar-alcohols) and secondary (i.e. carboxylic acids) water-soluble organic compounds (WSOCs) in size-segregated aerosols from the urban and mountain atmosphere of China and from the marine atmosphere in the outflow region of East Asia were characterized on a molecular level. Levoglucosan is the most abundant compound among the quantified WSOCs in the urban and mountain atmosphere, whose concentration at the urban site was 1–2 orders of magnitude higher than that at the mountain and marine sites. In contrast, malic, succinic and phthalic acids were dominant among the measured WSOCs at the marine site. In the urban air, sugars except levoglucosan gave a bimodal size distribution with a large peak in fine range (<2.1 μm) and a small peak in coarse range (≥2.1 μm) during winter, being opposite to those in spring. In contrast, these WSOCs at the mountain and marine sites dominated in the coarse range but diminished and even disappeared in the fine range. Geometric mean diameters (GMDs) of the measured WSOCs in the fine mode at the urban site were larger in winter than in spring. Levoglucosan and carboxylic acids except for azelaic and benzoic acids showed a larger GMD in the coarse mode at the marine site probably due to an increased hygroscopic growth.DOI: 10.1111/j.1600-0889.2011.00536.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Blando, J. D., Porcja, R. J., Li, T.-H., Bowman, D., Lioy, P. J. and co-workers. 1998. Secondary formation and the smoky mountain organic aerosol: an examination of aerosol polarity and functional group composition during SEAVS. Environ. Sci. Technol. 32(5), 604- 613.
    • Carvalho, A., Pic, C. and Santos, C. 2003. Water-soluble hydroxylated organic compounds in German and Finnish aerosols. Atmos. Environ. 37, 1775-1783.
    • Chebbi, A. and Carlier, P. 1996. Carboxylic aids in the troposphere, occurreence, sources, and sinks: a review. Atmos. Environ. 30, 4233-4249.
    • Claeys, M., Szmigielski, R., Kourtchev, I., VanderVeken, P., Vermeylen, R. and co-workers. 2007. Hydroxydicarboxylic acids: markers for secondary organic aerosol from the photooxidation of α-pinene. Environ. Sci. Technol. 41(5): 1628-1634.
    • Claeys, M., Wang, W., Ion, A. C., Kourtchev, I., Gelencser, A. and co-workers. 2004. Formation of secondary organic aerosols from isoprene and its gas-phase oxidation products through reaction with hydrogen peroxide. Atmos. Environ. 38(25), 4093-4098.
    • Cruz, C. N. and Pandis, S. N. 2000. Deliquescence and hygroscopic growth of mixed inorganic-organic atmospheric aerosols. Environ. Sci. Technol. 34, 4313-4319.
    • Decesari, S., Facchini, M. C., Fuzzi, S., McFiggans, G. B., Coe, H. and co-workers. 2005. The water-soluble organic component of sizesegregated aerosol, cloud water and wet depositions from Jeju Island during ACE-Asia. Atmos. Environ. 39(2), 211-222.
    • Decesari, S., Mircea, M., Cavalli, F., Fuzzi, S., Moretti, and co-workers. 2007. Source attribution of water-soluble organic aerosol by nuclear magnetic resonance spectroscopy. Environ. Sci. Technol. 41, 2479-2484.
    • Engling, G. and Gelencser, A. 2010. Atmospheric brown clouds: from local air pollution to climate change. Elements 6, 223-228.
    • Franze, T., Weller, M. G., Niessner, R. and Po¨schl, U. 2004. Comparison of nitrotyrosine antibodies and development of immunoassays for the detection of nitrated proteins. Analysis 129, 589-596.
    • Franze, T., Weller, M. G., Niessner, R. and Po¨schl, U. 2005. Protein nitration by polluted air. Environ. Sci. Technol. 39, 1673- 1678.
    • Fraser, M. P. and Lakshmanan, K. 2000. Using levogluosan as a molecular marker for the long-range transport of biomass combustion aerosols. Environ. Sci. Technol. 34, 4560-4564.
    • Furutani, H., Dall'osto, M., Roberts, G. C. and Prather, K. A. 2008. Assessment of the relative importance of atmospheric aging on CCN activity derived from field observations. Atmos. Environ. 42(13), 3130-3142.
    • Glasius, M., Lahaniati, M., Calogirou, A., Di Bella, D., Jensen, N. R. and co-workers. 2000. Carboxylic acids in secondary aerosols from oxidation of cyclic monoterpenes by ozone. Environ. Sci. Technol. 34(6), 1001-1010.
    • Graham, B., Mayol-Bracero, O. L., Guyon, P., Roberts, G. C., Decesari, S. and co-workers. 2002. Water-soluble organic compounds in biomass burning aerosols over Amazonia. 1. Characterization by NMR and GC-MS. J. Geophys. Res.-Atmos. 107, D20, doi:10.1029/2001JD000336.
    • Greenwald, R., Bergin, M. H., Weber, R. and Sullivan, A. 2007. Size-resolved, real-time measurement of water-insoluble aerosols in metropolitan Atlanta during the summer of 2004. Atmos. Environ. 41(3), 519-531.
    • Herner, J. D., Ying, Q., Aw, J., Gao, O., Chang, D. P. Y. and co-workers. 2006. Dominant mechanism that shape the airborne particle size and composition distribution in central California. Aeros. Sci. Technol. 40, 827-844.
    • Hinds, W. C. 1999. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. John Wiley & Sons, New York.
    • Ion, A. C., Vermeylen, R., Kourtchev, I., Cafmeyer, J., Chi, X. and coworkers. 2005. Polar organic compounds in rural PM2.5 aerosols from K-puszta, Hungary, during a 2003 summer field campaign: sources and diel variations. Atmos. Chem. Phys. 5, 1805-1814.
    • Kawamura, K. and Gagosian, R. B. 1987. Implication of ω- oxocarboxylic acids in the remote marine atmosphere for photooxidation of unsaturated fatty acids. Nature 325, 330-332.
    • Kawamura, K. and Ikushima, K. 1993. Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere. Environ. Sci. Technol. 27, 2227-2235.
    • Kawamura, K. and Kaplan, I. R. 1987. Motor exhaust emissions as a primary source for dicarboxylic acids in Los Angeles ambient air. Environ. Sci. Technol. 21, 105-110.
    • Kawamura, K. and Yasui, O. 2005. Diurnal changes in the distribution of dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban Tokyo atmosphere. Atmos. Environ. 39(10), 1945-1960.
    • Kourtchev, I., Warnke, J., Maenhaut, W., Hoffmann, T. and Claeys, M. 2008. Polar organic marker compounds in PM2.5 aerosol from a mixed forest site in western Germany. Chemosphere 73, 1308-1314.
    • Kuwata, M., Kondo, Y., Miyazaki, Y., Komazaki, Y., Kim, J. H. and co-workers. 2008. Cloud condensation nuclei activity at Jeju Island, Korea in spring. Atmos. Chem. Phys. 9, 2933-2948.
    • Mader, B. T., Yu, J. Z., Xu, J. H., Li, Q. F., Wu, W. S. and co-workers. 2004. Molecular composition of the water-soluble fraction of atmospheric carbonaceous aerosols collected during ACE-Asia. J. Geophys. Res.-Atmos. 109, D06206, doi:10.1029/2003JD004105.
    • Medeiros, P. M., Conte, M. H., Weber, J. C. and Simoneit, B. R. T. 2006. Sugars as source indicators of biogenic organic carbon in aerosols collected above the Howland Experimental Forest, Maine. Atmos. Environ. 40(9), 1694-1705.
    • Ming, Y. and Russell, L. M. 2004. Organic aerosol effects on fog droplet spectra. J. Geophys. Res.-Atmos. 109, D10206, doi:10.1029/2003JD004427.
    • Miyazaki, Y., Kawamura, K. and Sawano, M. 2010. Size distributions of organic nitrogen and carbon in remote marine aerosols: evidence of marine biological origin based on their isotopic ratios. Geophys. Res. Lett. 37, L06803, doi:10.1029/2010GL042483.
    • Mochida, M., Umemoto, N., Kawamura, K., Lim, H. J. and Turpin, B. J. 2007. Bimodal size distribution of various organic acids and fatty acids in the marine atmosphere: influence of anthropogenic aerosols, Asian dusts, and sea spray off the coast of East Asia. J. Geophys. Res. 112, D15209, doi:10.1029/2006JD007773.
    • Pierce, R. C. and Katz, M. 1975. Dependency of polynuclear aromatic hydrocarbon content on size distribution of atmospheric aerosols. Environ. Sci. Technol. 9(4), 347-353.
    • Po¨schl, U. 2005. Atmospheric aerosols: composition, transformation, climate and health effects. Angew. Chem. Int. Ed. 44, 7520-7540.
    • Pun, K., Seigneur, C., Grosjean, D. and Saxena, P. 1999. Gas-phase formation of water-soluble organic compounds in the atmosphere: a retrosynthetic analysis. J. Atmos. Chem. 35, 199-223.
    • Rogge, W. F., Mazurek, M. A., Hildemann, L. M., Cass, G. R. and Simoneit, B. R. T. 1993. Quantification of urban organic aerosols at a molecular level: identification, abundance and seasonal variation. Atmos. Environ. Part A. Gen. Top. 27(8), 1309-1330.
    • Sannigrahi, P., Sullivan, A. P., Weber, R. J. and Ingall, E. D. 2006. Characterization of water-soluble organic carbon in urban atmospheric aerosols using solid-state C-13 NMR spectroscopy. Environ. Sci. Technol. 40(3), 666-672.
    • Schauer, J. J., Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R. and co-workers. 1996. Source apportionment of airborne particulate matter using organic compounds as tracers. Atmos. Environ. 30, 3837-3855.
    • Simoneit, B. R. T. and Elias, V. O. 2001. Detecting organic tracers from biomass burning in the atmosphere. Marine Pollut. Bull. 42(10), 805-810.
    • Simoneit, B. R. T., Kobayashi, A., Kawamura, K. and Mochida, M. 2003. Saccharides, lipids and oxidation products in Asian dust and marine aerosols of the East Asia/Pacific region. Geochim. Cosmochim. Acta 67(18), A437-A437.
    • Simoneit, B. R. T., Elias, V. O., Kobayashi, M., Kawamura, K., Rushdi, A. I. and co-workers. 2004a. Sugars-dominant water-soluble organic compounds in soils and characterization as tracers in atmospheric particulate matter. Environ. Sci. Technol. 38, 5939-5949.
    • Simoneit, B. R. T., Kobayashi, M., Mochida, M., Kawamura, K. and Huebert, B. J. 2004b. Aerosol particles collected on aircraft flights over the northwestern Pacific region during the ACE-Asia campaign: composition and major sources of the organic compounds. J. Geophys. Res.-Atmos. 109, D19S09, doi:10.1029/2004JD0045650.
    • Simoneit, B. R. T., Kobayashi, M., Mochida, M., Kawamura, K., Lee, M. and co-workers. 2004c. Composition and major sources of organic compounds of aerosol particulate matter sampled during the ACE-Asia campaign. J. Geophys. Res.-Atmos. 109, D19S10, doi:10.1029/2004JD004598.
    • Sorjamaa, R., Svenningsson, B., Raatikainen, T., Henning, S., Bilde, M. and co-workers. 2004. The role of surfactants in Kohler theory reconsidered. Atmos. Chem. Phys. 4, 2107-2117.
    • Venkataraman, C., Negi, G., Brata Sardar, S. and Rastogi, R. 2002. Size distributions of polycyclic aromatic hydrocarbons in aerosol emissions from biofuel combustion. J. Aeros. Sci. 33(3), 503-518.
    • Wang, G., Kawamura, K. and Lee, M. 2009a. Comparison of organic compositions in dust storm and normal aerosol samples collected at Gosan, Jeju Island, during spring 2005. Atmos. Environ. 43, 219-227.
    • Wang, G., Kawamura, K., Umemoto, N., Xie, M., Hu, S. and coworkers. 2009b. Water-soluble organic compounds in PM2.5 and sizesegregated aerosols over Mt. Tai in North China Plain. J. Geophys. Res.-Atmos. 114, D19208, doi:10.1029/2008JD011390.
    • Wang, G., Kawamura, K., Xie, M., Hu, S., Cao, J. and co-workers. 2009c. Organic molecular compositions and size distributions of Chinese summer and autumn aerosols from Nanjing: characteristic haze event caused by wheat straw burning. Environ. Sci. Technol. 43, 6493- 6499.
    • Wang, G., Kawamura, K., Xie, M., Hu, S., Gao, S. and co-workers. 2009d. Size-distributions of n-alkanes, PAHs and hopanes and their sources in the urban, mountain and marine atmospheres over East Asia. Atmos. Chem. Phys. 9(22), 8869-8882.
    • Wang, G., Xie, M., Hu, S., Tachibana, E. and Kawamura, K. 2010. Dicarboxylic acids, metals and isotopic compositions of C and N in atmospheric aerosols from inland China: implications for dust and coal burning emission and secondary aerosol formation. Atmos. Chem. Phys. 10, 6087-6096.
    • Wang, G., Chen, C., Li, J., Zhou, B., Xie, M. and co-workers. 2011. Molecular composition and size distribution of sugars, sugar-alcohols and carboxylic acids in airborne particles during a severe urban haze event caused by wheat straw burning. Atmos. Environ. 45, 2473-2479.
    • Wang, G. H. and Kawamura, K. 2005. Molecular characteristics of urban organic aerosols from Nanjing: a case study of a mega-city in China. Environ. Sci. Technol. 39, 7430-7438.
    • Wang, G. H., Kawamura, K., Watanabe, T., Lee, S. C., Ho, K. F. and co-workers. 2006. Heavy loadings and source strengths of organic aerosols in China. Geophys. Res. Lett. 33, L22801, doi:10.1029/2006GL027624.
    • Yang, H. H., Hsieh, L. T., Lin, M. C., Mi, H. H. and Chen, P. C. 2004. Dry deposition of sulfate-containing particulate at the highway intersection, coastal and suburban areas. Chemosphere 54(3), 369- 378.
    • Yao, X., Lau, A. P. S., Fang, M., Chan, C. K. and Hu, M. 2003. Size distributions and formation of ionic species in atmospheric particulate pollutants in Beijing, China: 2-dicarboxylic acids. Atmos. Environ. 37, 3001-3007.
    • Yoshizumi, K. and Hoshi, A. 1985. Size distributions of ammonium nitrate and sodium nitrate in atmospheric aerosols. Environ. Sci. Technol. 19(3), 258-261.
    • Yttri, K. E., Dye, C. and Kiss, G. 2007. Ambient aerosol concentrations of sugars and sugar-alcohols at four different sites in Norway. Atmos. Chem. Phys. 7, 4267-4297.
    • Yu, J. Z., Yang, H., Zhang, H. and Lau, A. K. H. 2004. Size distributions of water-soluble organic carbon in ambient aerosols and its size-resolved thermal characteristics. Atmos. Environ. 38(7), 1061- 1071.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from