LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Moreau, Marie-Christiane; Gaboriau-Routhiau, Valérie (2011)
Publisher: Microbial Ecology in Health and Disease
Journal: Microbial Ecology in Health and Disease
Languages: English
Types: Article
Subjects:
Gut-associated lymphoid tissue (GALT) is under constant exposure to environmental antigens. The digestive flora is the main antigenic stimulus. A huge population of live bacterial cells, estimated at 1014 in number, colonizes the human gastrointestinal tract (1). Bacterial numbers and composition vary considerably along the gastrointestinal tract, constituting complex ecosystems which depend on the physiology of the host and on interactions between bacteria. It has recently been shown that GALT has the ability to develop tolerance towards resident bacterial flora (2). Conversely, the digestive flora considerably influences the development and functioning of GALT. To understand the relationships between the digestive flora and GALT, it is important to consider the evolution of bacterial equilibrium during the main biological stages of life, from a digestive point of view, i.e. infancy (up to 2 years of age), adulthood and old age, as well as the bacterial colonization of the different parts of the intestine. In this chapter, we will begin by dealing with the role of the resident digestive flora on the development and functions of GALT. Then, we will focus on the neo-natal period which could be of particular importance for protection against some pathologies such as allergy and hypersensitivities.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Luckey TD, Floch MH. Introduction to intestinal microecology. Am. J. Clin. Nutr. 1972; 25: 1291 - 5.
    • 2. Duchmann R, Kaiser I, Hermann E, Mayet W, Ewe K, Meyer zum Buschenfelde KH. Tolerance exists towards resident intestinal ora but is broken in active in ammatory bowel disease. Clin. Exp. Immunol. 1995; 102: 448 - 55.
    • 3. Raibaud P. Factors controlling the bacterial colonization of the neonatal intestine. In: Hanson LA, ed. Biology of Human Milk. New York: Raven Press, 1988: 205 - 19.
    • 4. Hudault S. Microbial colonisation of the intestine of newborn. In: Bindels JG, Goedhart AC, Visser HKA, eds. Recent Developments in Infant Nutrition. Dordrecht: Kluwer Academic Publishers, 1996: 307 - 17.
    • 5. Schaedler RW, Dubos R, Costello R. The development of the bacterial ora in the gastrointestinal tract of mice. J. Exp. Med. 1965; 122: 59 - 66.
    • 6. Moreau MC, Raibaud P, Muller MC. Relation entre le de´veloppement du syste`me immunitaire intestinal a` IgA et l'e´tablissement de la ore microbienne dans le tube digestif du souriceau holoxe´nique. Ann. Immunol. (Inst. Pasteur) 1982; 133D: 29 -39.
    • 7. Moreau MC, Corthier G, Muller MC, Dubos F, Raibaud P. Relationships between rotavirus diarrhea and intestinal micro ora establishment in conventional and gnotobiotic mice. J. Clin. Microbiol. 1986; 23: 863 - 8.
    • 8. Ducluzeau R. Role of experimental microbial ecology in gastroenterology. In: Bergogne-Berezin E, ed. Microbial Ecology and Intestinal Secretions. Paris: Springer, 1989: 7 -26.
    • 9. King CE, Toskes PP. Small intestine bacterial overgrowth. Gastroenterology 1979; 76: 1035 - 55.
    • 10. Moore WEC, Holdeman LV. Human fecal ora: the normal ora of 20 Japanese-Hawaiians. Appl. Microbiol. 1974; 27: 961 - 79.
    • 11. Finegold SM, Sutter VL, Mathisen GE. Normal indigenous intestinal ora. In: Hentges DJ, ed. Human Intestinal Micro ora in Health and Disease. New York: Academic Press, 1983: 3 - 31.
    • 12. Savage DC. Microbial ecology of the gastrointestinal tract. Annu. Rev. Microbiol. 1977; 31: 107 - 33.
    • 13. Salminen S, Bouley C, Boutron-Ruault MC, Cummings JH, Franck A, Gibson GR, Isolauri E, Moreau MC, Roberfroid M, Rowland I. Functional food science and gastrointestinal physiology and function. Br. J. Nutr. 1998; 80 (Suppl. 1): S147 - 71.
    • 14. MacCartney AL, Wenzhi W, Tannock GW. Molecular analysis of the composition of the bi dobacterial and lactobacillus micro ora of humans. Appl. Environ. Microbiol. 1996; 62: 4608 - 13.
    • 15. Zoetendal EG, Akkermans ADL, De Vos WM. Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-speci c communities of active bacteria. Appl. Environ. Microbiol. 1998; 64: 3854 - 9.
    • 16. Holdeman LV, Good IJ, Moore WEC. Human fecal ora: Variation in bacterial composition within individuals and a possible effect of emotional stress. Appl. Environ. Microbiol. 1976; 31: 359 - 75.
    • 17. Borriello SP. Clostridial disease of the gut. Clin. Infect. Dis. 1995; 20 (Suppl 2): S242 - 50.
    • 18. Ouwehand AC, Isolauri E, Kirjavainen PV, Salminen SJ. Adhesion of four Bi dobacterium strains to human intestinal mucus from subjects in different age groups. FEMS Microbiol. Lett. 1999; 172: 61 -4.
    • 19. Van Der Waaij D. Mechanisms involved in the development of the intestinal micro ora in relation to the host organism: consequences for colonization resistance. In: Hormaeche CE, Penn CW, Smyth CJ, eds. Molecular Biology of Bacterial Infection: Current Status and Future Perspectives. Cambridge: University Press, 1993: 1 - 12.
    • 20. Husband AJ, Gleeson M. Ontogeny of mucosal immunity. Environmental and behavioral in uences. Brain Behav. Immun. 1996; 10: 188 - 204.
    • 21. Brandtzaeg P. Development and basic mechanisms of human gut immunity. Nutr. Rev. 1998; 56: S5 -S18.
    • 22. MacDonald TT. Development of mucosal immune function in man: potential for G I disease states. Acta Pediatr. Japonica 1994; 36: 532 - 6.
    • 23. Crabbe P, Nash D, Bazin H, Eyssen H, Heremans JF. Immunohistochemical observations on lymphoid tissues from conventional and germ-free mice. Lab. Invest. 1970; 22: 448 - 57.
    • 24. Brandtzaeg P. Molecular and cellular aspects of the secretory immunolobulin system. APMIS 1995; 103: 1 - 19.
    • 25. Underdown B, Mestecky J. Mucosal immunoglobulins. In: Ogra A, et al., eds. Handbook of Mucosal Immunology. Orlando, FL: Academic Press, 1994: 79 - 97.
    • 26. Kette K, Baklien K, Bakken A, Kral JG, Fausa O, Brandtzaeg P. Intestinal B-cell isotype response in relation to local bacterial load: evidence for immunoglobulin A subclass adaptation. Gastroenterology 1995; 109: 819 - 25.
    • 27. Lionetti P, Breese E, Spencer J. Activation of V-b3 » T cells and tissue damage in human small intestine induced by the bacterial superantigen, Staphylococcus aureus enterotoxin B. Eur. J. Immunol. 1993; 23: 664 - 8.
    • 28. Halstensen TS, Scott H, Brandtzeag P. Human CD8 » intraepithelial T lymphocytes are mainly CD45RA-RB» and show increased co-expression of CD45R0 in celiac disease. Eur. J. Immunol. 1990; 20: 1825 - 9.
    • 29. Dohan A, MacDonald TT, Spencer J. The ontogeny of adhesion molecule expression in the human intestine. Clin. Exp. Immunol. 1993; 91: 532 -7.
    • 30. Cerf-Bensussan N, Guy-Grand D. Intestinal intraepithelial lymphocytes. Gastroenterol. Clin. North Am. 1991; 20: 549 - 76.
    • 31. Guy-Grand D, Cerf-Bensussan N, Malissen B, MalassisSeris M, Briottet C, Vassali P. Two gut intraepithelial CD8» lymphocyte populations with different T cell receptors: a role for the gut epithelium in T cell differentiation. J. Exp. Med. 1991; 173: 471 - 81.
    • 32. MacDonald TT, Weinel A, Spencer J. HLA-DR expression in human fetal intestinal epithelium. Gut 1988; 29: 1342 - 8.
    • 33. Rognum TO, Stoltenberg L, Vege A, Brandtzaeg P. Development of intestinal mucosal immunity in fetal life and in rst postnatal months. Pediatr. Res. 1992; 32: 145 - 9.
    • 34. Hughes A, Bloch KJ, Bhan AK, Gillen D, Giovino VC, Harmatz PR. Expression of MHC class II (Ia) antigen by the neonatal enterocytes: the effect of treatment with interferongamma. Immunology 1991; 72: 491 - 6.
    • 35. MacWilliam AS, Holt PG. Mucosal dendritic cells in the respiratory tract. Mucosal Immunol. Update 1997; 5: 21 - 5.
    • 36. Lu CY, Calamai EG, Unanue ER. A defect in the antigenpresenting function of macrophages from neonatal mice. Nature 1979; 282: 327 - 9.
    • 37. Ridge JP, Fuchs EJ, Matzinger P. Neonatal tolerance revisited: turning on newborn T cells with dendritic cells. Science 1996; 271: 1723 - 6.
    • 38. Wostmann BS, Pleasants JR. The germ-free animal fed chemically de ned diet: a unique tool. Proc. Soc. Exp. Biol. Med. 1991; 198: 539 -46.
    • 39. Parrott DMW. The gut-associated lymphoid tissue and gastrointestinal immunity. In: Fergusson A, MacSween NRM, eds. Immunological Aspects of the Liver and Gastrointestinal Tract. Lancaster: MTP Press, 1976: 1 - 32.
    • 40. Kramer DR, Cebra JJ. Early appearance of 'natural' mucosal IgA responses and germinal centers in suckling mice developing in the absence of maternal antibodies. J. Immunol. 1995; 154: 2051 - 62.
    • 41. Cebra JJ, Jlang HQ, Sterzl J, Tlaskalova-Hogenova H. The role of mucosal microbiota in the development and maintenance of the mucosal immune system. In: Ogra A, et al., eds. Mucosal Immunology. New-York: Academic Press, 1999: 267 - 80.
    • 42. Smith MW, James PS, Tivey DR. M cell numbers increase after transfer of SPF mice to a normal animal house. Am. J. Path. 1987; 128: 385 - 9.
    • 43. Craig SW, Cebra JJ. Peyer's patches an enriched source of precursors for IgA-producing immunocytes in the rabbit. J. Exp. Med. 1971; 134: 188 - 200.
    • 44. Guy-Grand D, Griscelli C, Vassali P. The gut-associated lymphoid system: nature and properties of large dividing cells. Eur. J. Immunol. 1974; 4: 435 -43.
    • 45. Kroese FGM, Butcher EC, Stall AM, Lalor PA, Adams S, Herzenberg LA. Many of the IgA producing cells in murine gut are derived from self-replenishing precursors in the peritoneal cavity. Int. Immunol. 1989; 1: 75 - 80.
    • 46. Beagley KW, Bao S, Husband AJ. Mucosal IgA responses in cytokine knockout mice: Differential cytokine requirement for IgA secretion by B-1 and B-2 cells. Mucosal Immunol. Update 1998; 6 (4): 15 - 9.
    • 47. Crabbe P, Bazin H, Eyssen H, Heremans JF. The normal microbial ora as a major stimulus for proliferation of plasma cells synthetizing IgA in the gut. Int. Arch. Allergy 1968; 34: 362 - 75.
    • 48. Van Der Heijden PJ, Bianchi ATJ, Heidt PJ, Stok W, Bokhout BA. Background (spontaneous) immunoglobulin production in the murine small intestine before and after weaning. J. Reprod. Immunol. 1989; 15: 217 - 27.
    • 49. Moreau MC, Ducluzeau R, Guy-Grand D, Muller MC. Increase in the population of duodenal IgA plasmocytes in axenic mice monoassociated with different living or dead bacterial strains of intestinal origin. Infect. Immun. 1978; 21: 532 - 9.
    • 50. Moreau MC, Ducluzeau R, Muller MC, Raibaud P. Effect of Escherichia coli strain on intestinal IgA plasmocyte stimulation and serum antibody response in gnotobiotic mice. Progress Clin. Biol. Res. 1984; 181: 391 - 5.
    • 51. MacGhee JR, Michalek SM, Kiyono H, Eldrigde JH, Colwell DE, Williamson SI, Wannemuehler MJ, Jirillo E, Mosteller LM, Spalding DM, Hamada S, Gollahon KA, Morisaki I, Gregory RL, Koopman WJ. Mucosal immunoregulation: environmental lipopolysaccharide and GALT lymphocytes regulate the IgA response. Microbial. Immunol. 1984; 28: 261 - 80.
    • 52. Rothkotter HJ, Ulbrich H, Pabst R. The postnatal development of gut lamina propria lymphocytes: number, proliferation and T and B cell subsets in conventional and germ-free pigs. Pediatr. Res. 1991; 29: 237 - 42.
    • 53. Beagley KW, Fujihashi K, Lagoo AS, Lagoo-Deenadaylan S, Black CA, Sharmanov AT, Yamamoto M, McGhee JR, Elson CO, Kyiono H. Differences in intraepithelial lymphocyte T cells subsets isolated from murine small versus large intestine. J. Immunol. 1995; 154: 5611 - 9.
    • 54. Bandeira A, Mota-Santos T, Itohara S, Degermann S, Heusser C, Tonegawa S, Coutinho A. Localization of g:d T cells to the intestinal epithelium is dependant of normal microbial colonization. J. Exp. Med. 1990; 172: 239 - 44.
    • 55. Stepankova R, Sinkora J, Hudcovic T, Kozakova H, Tlaskalova-hogenova H. Differences in development of lymphocyte subpopulations from GALT of germ-free and conventional rats: effect of aging. Folia Microbiol. 1998; 43: 531 - 4.
    • 56. Umesaki Y, Setoyama H, Matsumoto S, Okada Y. Expansion of a:b T-cell receptor-bearing intestinal intraepithelial lymphocytes after microbial colonization in germ-free mice and its independence from thymus. Immunology 1993; 79: 32 - 7.
    • 57. Kawaguchi-Miyashita M, Shimizu K, Nanno M, Shimada S, Watanabe T, Koga Y, Matsuoka Y, Ishikawa H, Hashimoto K, Ohwaki M. Development and cytolytic function of intestinal intraepithelial T lymphocytes in antigen-minimized mice. Immunology 1996; 89: 268 - 73.
    • 58. Ke Y, Pearce K, Lake JP, Ziegler HK, Kapp JA. T lymphocytes regulate the induction and maintenance of oral tolerance. J. Immunol. 1997; 158: 3610 - 8.
    • 59. Mengel J, Cardillo F, Aroeira LS, Williams O, Russo M. Anti-gd T cell antibody blocks the induction and maintenance of oral tolerance to ovalbumin in mice. Immunol. Lett. 1995; 48: 97 - 102.
    • 60. Regnault A, Cumano A, Vassali P, Guy-Grand D, Kourilsky P. Oligoclonal receptor of the CD8aa and the CD8ab TCR-ab murine intestinal intraepithelial T lymphocytes: evidence for the random emergence of T cells. J. Exp. Med. 1994; 180: 1345 - 9.
    • 61. Regnault A, Levraud JP, Lim A, Six A, Moreau MC, Cumano A, Kourilsky P. The expansion and selection of T cell receptor a:b intestinal intraepithelial T cell clones. Eur. J. Immunol. 1996; 26: 914 - 21.
    • 62. Helgeland L, Vaage JT, Rolstad B, Midtvedt T, Brandtzaeg P. Microbial colonization in uences composition and T-cell receptor Vb repertoire of intraepithelial lymphocytes in rat intestine. Immunology 1996; 89: 494 - 501.
    • 63. Matsumoto S, Setoyama H, Umesaki Y. Differential induction of major histocompatibility complex molecules on mouse intestine by bacterial colonization. Gastroenterology 1992; 103: 1777 - 82.
    • 64. Vidal K, Samarut C, Magnaud JP, Revillard JP, Kaiserlian D. Unexpected lack of reactivity of allogeneic anti-Ia monoclonal antibodies with MHC class II molecules expressed by mouse intestinal epithelial cells. J. Immunol. 1993; 151: 4642 - 50.
    • 65. Cock eld SM, Urmson J, Pleasants JR, Halloran PF. The regulation of expression of MHC products in mice. J. Immunol. 1990; 144: 2967 - 74.
    • 66. Williams NA, Harper HH, Cochrane L. Antigen presenting cells of the small intestinal lamina propria. Mucosal Immunol. Update 1997; 5: 29 - 32.
    • 67. De Smedt T, Pajak B, Muraille E, Lespagnard L, Heinen E, De Baetselier P, Urbain J, Leo O, Moser M. Regulation of dendritic cell numbers and maturation by lipopolysaccharide in ×i×o. J. Exp. Med. 1996; 184: 1413 - 24.
    • 68. MacPherson GG, Jenkins CD, Stein MJ, Edwards C. Endotoxin-mediated dendritic cell release from the intestine. Characterization of released dendritic cells and TNF dependence. J. Immunol. 1995; 154: 1317 -22.
    • 69. Gordon JR, Burd PR, Galli S. Mast cells as a source of multifunctional cytokines. Immunol. Today 1990; 11: 458 - 64.
    • 70. Nicaise P, Gleizes A, Forestier F, Sandre C, Quero AM, Labarre C. The in uence of E. coli implantation in axenic mice on cytokine production by peritoneal and bone marrow-derived macrophages. Cytokine 1995; 7: 713- 9.
    • 71. Smith PD, Meng G. Mucosal macrophages in infection and immunity. Mucosal Immunol. Update 1997; 5: 32 - 4.
    • 72. Johnson AG. Molecular adjuvants and immunomodulators: new approaches to immunization. Clin. Microbiol. Rev. 1994; 7: 277 - 89.
    • 73. Moreau MC, Bisetti N, Dubuquoy C. Immunomodulating properties of a strain of Bi dobacterium used as probiotic on the fecal and cellular intestinal IgA antirotavirus responses in mice. In: Sadler M, Saltmarsh M, eds. Functional Foods. The Royal Society of Chemistry, 1998a: 47 - 54.
    • 74. Moreau MC, Gaboriau-Routhiau V, Dubuquoy C, Bisetti N, Bouley C, Prevoteau H. Modulating properties of intestinal bacterial strains, Escherichia coli and Bi dobacterium, on two speci c immune responses generated by the gut, i.e. oral tolerance to ovalbumin and intestinal IgA anti-rotavirus response, in gnotobiotic mice. In: Talwar GP, Nath I, Ganguly NK, Rao KVS, eds. The 10th International Congress of Immunology. Bologna: Monduzzi Editore, 1998b: 407 - 11.
    • 75. Bouvet JP, Pire`s R, Iscaki S, Pillot J. Nonimmune macromolecular complexes of Ig in human gut lumen: probable enhancement of antibody functions. J. Immunol. 1993; 151: 2562 - 71.
    • 76. Bouvet JP, Fischetti VA. Diversity of antibody-mediated immunity at the mucosal barrier. Infect. Immun. 1999; 67: 3687 - 91.
    • 77. Andrieux C, Pire`s R, Moreau MC, Bouvet JP. Release of soluble co-receptor (Protein Fv) of secretory immunoglobulins after colonization of axenic rats by the human gut ora. Scand. J. Immunol. 1998; 48: 192 - 5.
    • 78. Murakami M, Honjo T. Involvement of B-1 cells in mucosal immunity and autoimmunity. Immunol. Today 1995; 16: 534 - 8.
    • 79. Katamaya M, Xu DZ, Specian RD, Deitch EA. Role of bacterial adherence and the mucus barrier on bacterial translocation: effects of protein malnutrition and endotoxin in rats. Ann. Surg. 1997; 225: 317 -26.
    • 80. Dickinson EC, Gorga JC, Garett M, Tuncer R, Boyle P, Walkins SC, Alber SM, Parizhskaya M, Trucco M, Rowe MI, Ford HR. Immunoglobulin A supplementation abrogates bacterial translocation and preserves the architecture of the intestinal epithelium. Surgery 1998; 124: 284 - 90.
    • 81. Marcotte H, Lavoie MC. No apparent in uence of immunoglobulins on indigenous oral and intestinal microbiota in mice. Infect. Immun. 1996; 64: 4694 - 9.
    • 82. Perdigon G, Alvarez S, Gobbato N, De Budeguer MV, De Ruiz Holgado AAP. Comparative effect of the adjuvant capacity of Lactobacillus casei and lipopolysaccharide on the intestinal secretory antibody response and resistance to Salmonella infection in mice. Food Agric. Immunol. 1995; 7: 283 - 94.
    • 83. Kaila M, Isolauri E, Soppi E, Virtanen E, Laine S, Arvilommi H. Enhancement of the circulating antibody secreting cell response in human diarrhea by a human Lacto - bacillus strain. Pediatr. Res. 1992; 32: 141 - 4.
    • 84. Herias MV, Midved T, Hanson LA, Wold AE. Increased antibody production against gut-colonizing E.coli in the presence of the anaerobic bacterium Peptostreptococcus Scand. J. Immunol. 1998; 48: 277 - 82.
    • 85. Flo J, Goldma H, Roux ME, Massoud E. Oral administration of a bacterial immunomodulator enhances the immune response to cholera toxin. Vaccine 1996; 14: 1167 - 73.
    • 86. Hamann L, El-Samalouti V, Ulmer AJ, Flad HD, Rietschel ET. Components of gut bacteria as immunomodulators. Int. J. Food Microbiol. 1998; 41: 141 - 54.
    • 87. Babb JL, Kiyono H, Michalek SM, McGhee JR. LPS regulation of the immune response: suppression of immune response to orally administered T-independent antigen. J. Immunol. 1981; 127: 1052 - 7.
    • 88. Kiyono H, Babb JL, Michalek S, McGhee JR. Cellular basis for elevated IgA responses in C3H:HeJ mice. J. Immunol. 1980; 125: 732 - 7.
    • 89. Pecquet S, Ehrat C, Ernst P. Enhancement of mucosal antibody responses to Salmonella typhimurium and the microbial hapten phosphorylcholine in mice with X-linked immunode ciency by B-cell precursors from the peritoneal cavity. Infect. Immun. 1992; 60: 503 - 9.
    • 90. Krahenbuhl JP, Neutra M. Molecular and cellular basis of immune protection of mucosal surfaces. Physiol. Rev. 1992; 72: 853 - 79.
    • 91. Cebra JJ, Bos NA, Cebra ER, Kramer DR, Kroese FGM, Schrader CE. Cellular and molecular biologic approaches for analyzing the in ×i×o development and maintenance of gut mucosal IgA responses. In: Mestecky, et al., eds. Advances in Mucosal Immunology. New-York: Plenum Press, 1995: 429 - 34.
    • 92. Bona C, Bot A. Neonatal immunoresponsiveness. The Immunol. 1997; 5: 5 - 9.
    • 93. Mowat AM. The regulation of immune responses to dietary protein antigens. Immunol. Today 1987; 8: 93 - 8.
    • 94. Husby S, Mestecky J, Moldoveanu Z, Holland S, Elson CO. Oral tolerance in humans - T cell but not B cell tolerance after antigen feeding. J. Immunol. 1994; 152: 4663 - 70.
    • 95. Husby S, Jensenius JC, Svehag SE. Passage of undegraded dietary antigen into the blood of healthy adults. Quanti cation, estimation of size distribution and relation of uptake to levels of speci c antibodies. Scand. J. Immunol. 1985; 22: 83 - 92.
    • 96. Weiner HL. Oral tolerance: immune mechanisms and treatment of autoimmune diseases. Immunol. Today 1997; 18: 335 - 43.
    • 97. Strobel S, Mowat AM. Immune responses to dietary antigens: oral tolerance. Immunol. Today 1998; 19: 173 - 81.
    • 98. Strobel S, Ferguson A. Persistence of oral tolerance in mice fed ovalbumin is different for humoral and cell-mediated immune responses. Immunology 1987; 60: 317 - 8.
    • 99. Lamont AG, Bruce MG, Watret KC, Ferguson A. Suppression of an established DTH response to ovalbumin in mice by feeding antigen after immunization. Immunology 1988; 64: 135 - 40.
    • 100. Peng HJ, Turner MW, Strobel S. The kinetics of oral hyposensitization to a protein antigen are determined by immune status and the timing, dose and frequency of antigen administration. Immunology 1989; 67: 425 -30.
    • 101. Saklayen MG, Pesce AJ, Pollak VE, Michael JG. Kinetics of oral tolerance: study of variables affecting tolerance induced by oral administration of antigen. Int. Arch. Allergy Appl. Immunol. 1984; 73: 5 - 9.
    • 102. Sampson HA, Burks AW. Mechanisms of food allergy. Annu. Rev. Nutr. 1996; 16: 161 - 77.
    • 103. Challacombe SJ, Tomasi TB. Systemic tolerance and secretory immunity after oral immunization. J. Exp. Med. 1980; 152: 1459 - 72.
    • 104. Weiner HL, Friedman A, Miller A, Khoury SJ, Al-Sabbagh A, Santos L, Sayegh M, Nussenblatt RB, Trentham DE, Ha er DA. Oral tolerance: immunologic mechanisms and treatment of animal and human organ-speci c autoimmune diseases by oral administration of autoantigens. Annu. Rev. Immunol. 1994; 12: 809 - 37.
    • 105. Garside P, Mowat AM. Mechanisms of oral tolerance. Cri. Rev. Immunol. 1997; 17: 119 - 37.
    • 106. Lycke N, Bromander A, Ekman L, Grdic D, Hornquist E, Kjerrulf E, Kopf M, Kosco-Vilbois M, Schon K, Vajdy M. The use of knock-out mice in studies of induction and regulation of gut mucosal immunity. Mucosal Immunol. Update 1995; 3: 1 - 8.
    • 107. Garside P, Steel M, Liew FY, Mowat AM. CD4» but not CD8» T cells are required for the induction of oral tolerance. Int. Immunol. 1995; 7: 501 - 4.
    • 108. Barone KS, Jain SL, Michael JG. Effect of in ×i×o depletion of CD4 » and CD8» cells on the induction and maintenance of oral tolerance. Cell. Immunol. 1995; 163: 19 - 29.
    • 109. Chen Y, Kuchroo VK, Inobe JI, Ha er DA, Weiner HL. Regulatory T cell clones induced by oral tolerance: Suppression of autoimmune encephalomyelitis. Science 1994; 265: 1237 - 40.
    • 110. Garside P, Steel M, Worthey EA, Satoskar A, Alexander J, Bluethmann H, Liew FY, Mowat AM. T helper 2 cells are subject to high dose oral tolerance and are not essential for its induction. J. Immunol. 1995; 154: 5649 - 55.
    • 111. Aroeira LS, Cardillo F, De Albuquerque DA, Vaz NM, Mengel J. Anti-Il-10 treatment does not block either the induction or the maintenance of orally induced tolerance to ovalbumin. Scand. J. Immunol. 1995; 41: 319 - 23.
    • 112. Rizzo LV, Morawetz RA, Miller-Rivero NE, Choi R, Wiggert B, Chan CC, Morse HC, Nussenblatt RB, Caspi RR. Il-4 and Il-10 are both required for the induction of oral tolerance. J. Immunol. 1999; 162: 2613 - 22.
    • 113. Thomas MJ, Kemeny DM. Novel CD4 and CD8 T-cell subsets. Allergy 1998; 53: 1122- 32.
    • 114. Powrie F, Carlino J, Leach MW, Mauze S, Coffman RL. A critical role for transforming growth factor-b but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RBlow CD4» T cells. J. Exp. Med. 1996; 183: 2669 - 74.
    • 115. Mowat AM, Viney JL. The anatomical basis of intestinal immunity. Immunol. Rev. 1997; 156: 145 - 66.
    • 116. Viney JL, Mowat AM, O'Malley J, Williamson E, Fanger NA. Expanding dendritic cells in ×i×o enhances the induction of oral tolerance. J. Immunol. 1998; 160: 5815 - 25.
    • 117. Samoilova EB, Horton JL, Zhang H, Khoury SJ, Weiner HL, Chen Y. CTLA-4 is required for the induction of high dose oral tolerance. Int. Immunol. 1998; 10: 491 - 8.
    • 118. Bruce MG, Ferguson A. Oral tolerance to ovalbumin in mice: studies of chemically modi ed and 'biologically ltered' antigen. Immunology 1986; 57: 627 - 30.
    • 119. Bruce MG, Ferguson A. The in uence of intestinal processing on the immunogenicity and molecular size of absorbed, circulating ovalbumin in mice. Immunology 1986; 59: 295 - 300.
    • 120. Louis E, Franchimont D, Lamproye A, Van Kemseke C, Schaaf N, Mahieu P, Belaiche J. Systemic immune response after rectocolonic administration of ovalbumin in mice. Int. Arch. Allergy Immunol. 1995; 108: 19 - 23.
    • 121. MacMenamin C, McKersey M, Ku¨ hnlein P, H u¨nig T, Holt PG. T cells down-regulate primary IgE responses in rats to inhaled soluble protein antigens. J. Immunol. 1995; 154: 4390 - 4.
    • 122. Dahlman A, Ahlstedt S, Hanson LA, Telemo E, Wold AE, Dahlgren UI. Induction of IgE antibodies and T-cell reactivity to ovalbumin in rats colonized with Escherichia coli genetically manipulated to produce ovalbumin. Immunology 1992; 76: 225 - 8.
    • 123. Mowat AM, Maloy KJ, Donachie AM. Immune-stimulating complexes as adjuvants for inducing local and systemic immunity after oral immunization with protein antigens. Immunology 1993; 80: 527 - 34.
    • 124. Fritsche´ R, Pahud JJ, Pecquet S, Pfeifer A. Induction of systemic immunologic tolerance to b - lactoglobulin by oral administration of a whey protein hydrolysate. J. Allergy Clin. Immunol. 1997; 100: 266 - 73.
    • 125. Peng HJ, Chang ZN, Han SH, Won MH, Huang BT. Chemical denaturation of ovalbumin abrogates the induction of oral tolerance of speci c IgG antibody and DTH responses in mice. Scand. J. Immunol. 1995; 42: 297 - 304.
    • 126. Peng HJ, Chang ZN, Lin SY, Han SH, Chang CH. Chemical denaturation of ovalbumin abrogates the induction of oral tolerance of mouse reaginic antibody responses. Scand. J. Immunol. 1998; 47: 475 - 80.
    • 127. Peng HJ, Turner MW, Strobel S. The generation of a 'tolerogen' after ingestion of ovalbumin is time-dependant and unrelated to serum levels of immunoreactive antigen. Clin. Exp. Immunol. 1990; 81: 510 - 5.
    • 128. Lamont AG, Mowat A, Parrott D. Priming of systemic and local delayed-type hypersensitivity responses by feeding low doses of ovalbumin to mice. Immunology 1989; 66: 595 - 9.
    • 129. Moreau MC, Gaboriau-Routhiau V. The absence of gut ora, the doses of antigen ingested and aging affect the long-term peripheral tolerance induced by ovalbumin feeding in mice. Res. Immunol. 1996; 147: 49 - 59.
    • 130. Friedman A, Weiner HL. Induction of anergy or active suppression following oral tolerance is determined by antigen dosage. PNAS 1994; 91: 6688 - 92.
    • 131. Gregerson DS, Obritsch WF, Donoso LA. Oral tolerance in experimental autoimmune uveoretinitis. Distinct mechanisms of resistance are induced by low ×s high dose feeding protocols. J. Immunol. 1993; 151: 5751 - 61.
    • 132. Stokes CR, Swarbrick ET, Soothill JF. Genetic differences in immune exclusion and partial tolerance to ingested antigens. Clin. Exp. Immunol. 1983; 52: 678 - 84.
    • 133. Lamont AG, Mowat A, Browning MJ, Parrott DMV. Genetic control of oral tolerance to ovalbumin in mice. Immunology 1988; 63: 737 - 9.
    • 134. Strobel S, Ferguson A. Immune responses to fed protein antigen in mice. III. Systemic tolerance or priming is related to age at which antigen is rst encountered. Pediatr. Res. 1984; 18: 588 - 94.
    • 135. Hanson DG. Ontogeny of orally induced tolerance to soluble proteins in mice. I. Priming and tolerance in newborns. J. Immunol. 1981; 127: 1518 - 24.
    • 136. Miller A, Lider O, Abramsky O, Weiner HL. Orally administered myelin basic protein in neonates primes for immune responses and enhances experimental autoimmune encephalomyelitis in adult animals. Eur. J. Immunol. 1994; 24: 1026 - 32.
    • 137. Heppell LM, Kilshaw P. Immune responses in guinea pigs to dietary protein. I. Induction of tolerance by feeding ovalbumin. Int. Arch. Allergy Appl. Immunol. 1982; 68: 54 - 9.
    • 138. Telemo E, Jacobsson I, Westro¨ m B, Folkesson H. Maternal dietary antigens and the immune response of the offspring in the guinea pig. Immunology 1987; 62: 35 - 8.
    • 139. Peng HJ, Turner MW, Strobel S. Failure to induce oral tolerance to protein antigen in neonatal mice can be corrected by transfer of adult spleen cells. Pediatr. Res. 1989; 24: 486 - 90.
    • 140. Vaarala O, Saukkonen T, Savilahti E, Klemola T, Akerblom HK. Development of immune response to cow's milk proteins in infants receiving cow's milk or hydrolyzed formula. J. Allergy Clin. Immunol. 1995; 96: 917 - 23.
    • 141. Lundin BS, Dahlgren UIH, Hanson LA, Telemo E. Oral tolerization leads to active suppression and bystander tolerance in adult rats while anergy dominates in young rats. Scand. J. Immunol. 1996; 43: 56 - 63.
    • 142. Strobel S, Mowat AM, Ferguson A. Prevention of oral tolerance induction to ovalbumin and enhanced antigen presentation during graft-versus-host reaction in mice. Immunology 1985; 56: 57- 64.
    • 143. Louis E, Franchimont D, Deprez M, Lamproye A, Schaaf N, Mahieu P, Belaiche J. Decrease in systemic tolerance to fed ovalbumin in indomethacin-treated mice. Int. Arch. Allergy Immunol. 1996; 109: 21 - 6.
    • 144. Troncone R, Caputo N, Zibella A, Russo R, Rossi M, Gianfrani C, Stern M, Wieser H, Auricchio S. Defective 'gut processing' of gliadin in mice with graft-versus-host enteropathy. Int. Arch. Allergy Immunol. 1996; 109: 44 - 9.
    • 145. Heyman M, Darmon N, Dupont C, Dugas B, Hirribaren A, Blaton AM, Desjeux JF. Mononuclear cells from infants allergic to cow's milk secrete tumor necrosis factor alpha, altering intestinal function. Gastroenterology 1994; 106: 1514 - 23.
    • 146. Benlounes N, Dupont C, Candalh C, Blaton MA, Darmon N, Desjeux JF, Heyman M. The threshold for immune cell reactivity to milk antigens decreases in cow's milk allergy with intestinal symptoms. J. Allergy Clin. Immunol. 1996; 98: 781 - 9.
    • 147. Saidi D, Heyman M, Kheroua O, Boudraa G, Bylsma P, Kerroucha R, Chekroun A, Maragi JA, Touhami M, Desjeux JF. Jejunal response to b-lactoglobulin in infants with cow's milk allergy. C.R. Acad. Sci. Paris 1995; 318: 683 - 9.
    • 148. Wannemuehler MJ, Kiyono H, Babb JL, Michalek SM, McGhee JR. Lipopolysaccharide (LPS) regulation of the immune response: LPS converts germfree mice to sensitivity to oral tolerance induction. J. Immunol. 1982; 129: 959- 65.
    • 149. Khoury SJ, Lider O, Al-Sabbagh A, Weiner HL. Suppression of experimental autoimmune encephalomyelitis by oral administration of myelin basic protein. III. Synergistic effect of lipopolysaccharide. Cell. Immunol. 1990; 131: 302 - 10.
    • 150. Moreau MC, Corthier G. Effect of the gastrointestinal micro ora on induction and maintenance of oral tolerance to ovalbumin in C3H:HeJ mice. Infect. Immun. 1988; 56: 2766 - 8.
    • 151. Sudo N, Sawamura SA, Tanaka K, Aiba Y, Kubo C, Koga Y. The requirement of intestinal bacterial ora for the development of an IgE production system fully susceptible to oral tolerance induction. J. Immunol. 1997; 159: 1739- 45.
    • 152. Heyman M, Crain-Denoyelle AM, Corthier G, Morgat JL, Desjeux JF. Postnatal development of protein absorption in conventional and germ-free mice. Am. J. Physiol. 1986; 14: G326 - 31.
    • 153. Elson CO, Ealding W. Cholera toxin feeding did not induce oral tolerance in mice and abrogated oral tolerance to an unrelated protein antigen. J. Immunol. 1984; 133: 2892 -7.
    • 154. Clements JD, Hartzog NM, Lyon FL. Adjuvant activity of Escherichia coli heat-labile enterotoxin and effect on the induction of oral tolerance in mice to unrelated protein antigens. Vaccine 1988; 6: 269 - 77.
    • 155. Snider DP, Marshall JS, Perdue MH, Liang H. Production of IgE antibody and allergic sensitization of intestinal and peripheral tissues after oral immunization with protein Ag and cholera toxin. J. Immunol. 1994; 153: 647 - 57.
    • 156. Pierre P, Denis O, Bazin H, Mbella EM, Vaerman JP. Modulation of oral tolerance to ovalbumin by cholera toxin and its B subunit. Eur. J. Immunol. 1992; 22: 3179 - 82.
    • 157. Gaboriau-Routhiau V, Moreau MC. Gut ora allows recovery of oral tolerance to ovalbumin in mice after transient breakdown mediated by cholera toxin or Escherichia coli heat-labile enterotoxin. Pediatr. Res. 1996; 39: 625 - 9.
    • 158. Gaboriau-Routhiau V, Moreau MC. Oral tolerance to ovalbumin in mice: induction and long-term persistence unaffected by Staphylococcus aureus enterotoxin B and Clostridium perfringens type A enterotoxin. Pediatr. Res. 1997; 42: 503 - 8.
    • 159. Verma M, Majumdar S, Ganguly NK, Walia BNS. Effect of Escherichia coli enterotoxins on macromolecular absorption. Gut 1994; 35: 1613- 6.
    • 160. Heyman M, Dumontier AM, Desjeux JF. Intestinal barrier to intact horseradish peroxidase in experimental secretory diarrhea. J. Pediatr. Gastroenterol. Nutr. 1986; 5: 463 - 6.
    • 161. Monneret-Vautrin DA, Kanny G. Allergies alimentaires. Rev. Prat. (Paris) 1996; 46: 961 - 7.
    • 162. Koning H, Baert MRM, Oranje AP, Savelkoul HFJ, Neijens HJ. Development of immune functions related to allergic mechanisms in young children. Pediatr. Res. 1996; 40: 363 - 75.
    • 163. Bjo¨rkste´n B. Environmental in uence on the development of childhood immunity. Nutr. Rev. 1998; 56: S106 - 12.
    • 164. Holt PG, Macaubas C. Development of long term tolerance versus sensitisation to environmental allergens during the perinatal period. Curr. Opin. Immunol. 1997; 9: 782 - 7.
    • 165. Warner JA, Jones AC, Miles EA, Colwell BM, Warner JO. Maternofetal interaction and allergy. Allergy 1996; 51: 447 - 51.
    • 166. Trinchieri G. Interleukin-12 and its role in the generation of Th1 cells. Immunol. Today 1993; 14: 335 - 8.
    • 167. Arulanandam BP, VanCleave VH, Metzger DW. IL-12 is a potent neonatal vaccine adjuvant. Eur. J. Immunol. 1999; 29: 256 - 64.
    • 168. Nicaise P, Gleizes A, Sandre C, Kergot R., Lebrec H, Forestier F, Labarre C, 1999. The intestinal micro ora regulates cytokine production positively in spleen-derived macrophages but negatively in bone marrow-derived macrophages. Eur. Cytokine. Net., 10, in press.
    • 169. Hilkens CMU, Messer G, Tesselaar K, Van Rietschoten AGI, Kapsenberg M, Wierenga EA. Lack of IL-12 signaling in human allergen-speci c Th2 cells. J. Immunol. 1996; 157: 4316 - 21.
    • 170. Vanderplas Y. Myths and facts about breastfeeding: does it prevent later atopic allergy? Nutr. Res. 1998; 18: 1373 - 87.
    • 171. Kolb H, Pozilli P. Cow's milk and type I diabetes: the gut immune system deserves attention. Immunol. Today 1999; 20: 108 - 10.
    • 172. Singh B, Rabinovitch A. In uence of microbial agents on the development and prevention of autoimmune diabetes. Autoimmunity 1993; 15: 209 - 13.
    • 173. Strachan DP. Hay, fever, hygiene and household size. Br. J. Med. 1988; 1259 - 60
    • 174. Ruuska T. Occurrence of acute diarrhea in atopic and nonatopic infants: the role of prolonged breast-feeding. J. Pediatr. Gastroenterol. Nutr. 1992; 14: 27 - 33.
    • 175. Wold AE. The hygiene hypothesis revised: is the rising frequency of allergy due to changes in the intestinal ora? Allergy 1998; 53: 20 - 5.
    • 176. Sarandakou A, Giannaki G, Malamitsi-Putchner A, Rizos D, Hourdaki E, Protonotariou E, Phocas I. In ammatory cytokines in newborn infants. Mediators In amm. 1998; 7: 309 - 12.
    • 177. Karlsson MR, Kabu H, Hanson LA, Telemo E, Dahlgren UIH. Neonatal colonization of rats induces immunological tolerance to bacterial antigens. Eur. J. Immunol. 1999; 29: 109 - 18.
    • 178. Brandwein SL, MacCabe RP, Cong Y, Wiates KB, Ridwan BU, Dean PA, Ohkusa T, Birkenmeier EH, Sundberg JP, Elson CO. Spontaneously colitic C3H:HeJBir mice demonstrate selective antibody reactivity to antigens of the enteric bacterial ora. J. Immunol. 1997; 159: 44 -52.
    • 179. Guihot G, Merle V, Leborgne M, Pivert G, Corriol O, Brousse N, Ricour C, Colomb V. Enteral nutrition modi es Gut-Associated Lymphoid Tissue in rat regardless of the molecular form of nitrogen supply. J. Pediatr. Gastroenter. Nutr. 1997; 24: 153 - 61.
    • 180. Siavoshian S, Blottiere HM, Bentouimou N, Cherbut C, Galmiche JP. Butyrate enhances major histocompatibility complex class I, HLA-DR and ICAM-1 antigen expression on differentiated human intestinal epithelial cells. Eur. J. Clin. Invest. 1996; 26: 803 - 10.
    • 181. Medzitov R, Janeway CA. Innate immunity: impact on the adaptative immune response. Curr.Opin. Immunol. 1997; 9: 4 -7.
    • 182. Bos NA, Meeuwsen G, Wostman BS, Pleasants JR, Benner R. The in uence of exogenous antigenic stimulation on the speci city repertoire of background immunoglobulin-secreting cells of different isotypes. Cell. Immunol. 1988; 112: 371 - 80.
    • 183. Freitas AA, Viale AC, Sunblad A, Heusser C, Coutinho A. Normal serum immunoglobulins participate in the selection of peripheral B-cell repertoires. PNAS 1991; 88: 5640 - 4.
    • 184. Kaveri SV, Lacroix-Desmazes S, Mouthon L, Kazatchkine MD. Human natural autoantibodies: lessons from physiology and prospects for therapy. The Immunologist 1998; 6: 227 - 33.
    • 185. Van Den Broek MF, Van Bruggen MCJ, Koopman JP, Hazenberg MP, Van Der Berg WB. Gut ora induces and maintains resistance against streptococcal cell wall-induced arthritis in F344 rats. Clin. Exp. Immunol. 1992; 88: 313 - 7.
    • 186. Milon G, Moreau MC, Lebastard M, Marshall G. Hematopoiesis during infection in mice: an inducible, genetically controlled response mediated by CD4 » T cells homing in their bone marrow. In: van Furth R, ed. Mononuclear Phagocytes. The Netherlands: Kluwer Academic Publishers, 1992: 50 - 4.
    • 187. Cukrowska, B., Lodinova`-Zadnikova`, R., Sokol, D., Tlaskalova-Hogenov a`, H., 1999. In ×itro immunoglobulin response of fetal B-cells is in uenced by perinatal infections and antibiotic treatment: a study in preterm infants. Eur. J. Pediatr., 158, in press.
    • 188. Fergusson A. Mucosal immunology: from bench to the bedside and beyond. Immunology 1996; 89: 475- 782.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from