LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Ohde, Thomas; Siegel, Herbert (2012)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects: Saharan dust; downward solar irradiance; photosynthetically available radiation; Northwest Africa
Radiation measurements in the area off Northwest Africa (research cruise, February 2008) and at Mindelo (Cape Verde Islands, May 2009) were used to investigate the impacts of Saharan dust and clouds on solar irradiance and on photosynthetically available radiation, to derive a relationship between dust aerosol optical depth (AOD) and photosynthetically available radiation and to determine the annual variations of photosynthetically available radiation. Three different kinds of atmospheric conditions were considered: cloudy skies, which decreased or increased the irradiance and dusty skies. The reduction by clouds was up to 67.2% at 400 nm and up to 84.4% at 700 nm. Enhancements of up to 21.9% at 400 nm and 34.0% at 700 nm were observed. The decrease by dust was up to 19.7% at 400 nm and up to 4.1% at 700 nm. Clouds decreased or increased the photosynthetically available radiation by up to 79.9% or up to 31.2%. The reduction by dust depended on the dust AOD and was between 3.6% and 12.3%. A linear relationship confirmed a decrease of photosynthetically available radiation of 1.2% by an increase of dust AOD of 0.1.Keywords: Saharan dust; downward solar irradiance; photosynthetically available radiation; Northwest Africa(Published: 30 January 2012)Citation: Tellus B 2012, 64, 17160, DOI: 10.3402/tellusb.v64i0.17160
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Adeyefa, Z. D., Holmgren, B. and Adedokun, J. A. 1995. Spectral solar irradiance under Harmattan conditions. J. Renewable Energy. 6, 989 996.
    • Alados, I., Olmo, F. J., Foyo-Moreno, I. and Alados-Arboledas, L. 2000. Estimation of photosynthetically active radiation under cloudy conditions. Agric. For. Meteorol. 102, 39 50.
    • Ansmann, A., Petzold, A., Kandler, K., Tegen, I., Wendisch, M. and co-authors. 2011. Saharan Mineral Dust Experiments SAMUM 1 and SAMUM 2: what have we learned? Tellus B. 63(4), 403 429.
    • Arnone, R. A. 1994. The temporal and spatial variability of chlorophyll in the western Mediterranean. In: Seasonal and Interannual Variability of the Western Mediterranean Sea, Coastal Estuarine Studies (ed. P. La Violette), Vol. 46, AGU, Washington, DC, pp. 195 225.
    • Arnone, R. A., Ladner, S., La Violette, P. E., Brock, J. C. and Rochford, P. A. 1998. Seasonal and interannual variability of surface photosynthetically available radiation in the Arabian Sea. J. Geophys. Res. 103(C4), 7735 7748.
    • Barbosa, P. M., Stroppiana, D., Gregoire, J. M. and Pereira, J. M. C. 1999. An assessment of vegetation fire in Africa (1981 1991): burned areas, burned biomass, and atmospheric emissions. Global Biogeochem. Cyc. 13, 933 950.
    • Bartlett, J. S., Ciotti, A´. M., Davis, R. F. and Cullen, J. J. 1998. The spectral effects of clouds on solar irradiance. J. Geophys. Res. 103(C13), 31017 31031. DOI:10.1029/1998JC900002.
    • Bird, R. E. and Riordan, C. J. 1986. Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the earth's surface for cloudless atmospheres. J. Clim. Appl. Meteor. 25(1), 87 97.
    • Bourassa, M. A., Legler, D., O'Brian, J. J. and Smith, S. R. 2003. SeaWinds validation with research vessels. J. Geophys. Res. 108(C2), 3019. DOI:10.1029/2001JC001028.
    • Carlson, T. N. and Caverly, R. S. 1977. Radiative characteristics of Saharan dust at solar wavelengths. J. Geophys. Res. 82(21), 3141 3152. DOI:10.1029/JC082i021p03141.
    • Carlson, T. N. and Benjamin, S. G. 1980. Radiative heating rates for Saharan dust. J. Atmos. Sci. 37, 193 213.
    • Chelton, D. B. and Freilich, M. H. 2005. Scatterometer-based assessment of 10 m wind analysis from the operational ECMWF and NCEP numerical weather prediction models. Mon. Wea. Rev. 133, 409 429.
    • Chen, G., Ziemba, L. D., Chu, D. A., Thornhill, K. L., Schuster, G. L. and co-authors. 2010. Observation of Saharan dust microphysical and optical properties from the Eastern Atlantic during NAMMA airborne field campaign. Atmos. Chem. Phys. Discuss. 11, 723 740.
    • Chiapello, I. and Moulin, C. 2002. TOMS and METEOSAT satellite records of the variability of Saharan dust transport over the Atlantic during the last two decades (1979 1997). Geophys. Res. Lett. 29(8), 1176. DOI:10.1029/2001GL013767.
    • Claustre, H., Morel, A., Hooker, S. B., Babin, M., Antoine, D. and co-authors. 2002. Is desert dust making oligotrophic waters greener? Geophys. Res. Lett., 29(10), 1469. DOI:10.1029/ 2001GL014056.
    • Davies, J. A. 1995. Comparison of modeled and observed global irradiance. J. Appl. Meteorol. 35, 192 201.
    • Dickey, T. and Simpson, J. J. 1983. The influence of optical water type on the diurnal response of the upper ocean. Tellus B. 35, 142 154.
    • Drouin, A. and Karcher, F. 2004. High resolution ozone column derived from SEVIRI 9.7 ozone channel. In: Proceedings Second MSG RAO Workshop, Salzburg, Austria, 9 10 September 2004 (ESA SP-582, November 2004).
    • Dubovik, O., Holben, B., Eck, T. F., Smirnov, A., Kaufman, Y. J. and co-authors. 2002. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci. 59, 590 608.
    • Ebuchi, N., Graber, H. C. and Caruso, M. J. 2002. Evaluation of wind vectors observed by QuikSCAT/SeaWinds using ocean buoy data. Am. Meteorol. Soc. 19, 2049 2062.
    • Ebuchi, N. 2006. Evaluation of marine surface winds observed by SeaWinds and AMSR on ADEOSII. J. Oceanogr. 62, 293 301.
    • Frederick, J. E. and Erlick, C. 1997. The attenuation of sunlight by high-latitude clouds: spectral dependence and its physical mechanisms. J. Atmos. Sci. 54, 2813 2819.
    • Frouin, R. and Murakami, H. 2007. Estimating photosynthetically available radiation at the ocean surface from ADEOS-II global imager data. J. Oceanogr. 22(3), 493 503. DOI: 10.1007/s10872-007-0044-3.
    • Gordon, H. R., Clark, D. K., Brown, J. W., Brown, O. W., Evans, R. H. and co-authors. 1983. Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison of ship determinations and CZCS estimates. Appl. Optics. 22(1), 20 36. DOI:10.1364/AO.22.000020.
    • Goudie, A. S. and Middleton, N. J. 2001. Saharan dust storms: nature and consequences. Earth Sci. Rev. 56, 179 204.
    • Gregg, W. W. and Carder, K. L. 1990. A simple spectral solar irradiance model for cloudless maritime atmospheres. Limnol. Oceanogr. 35, 1657 1675.
    • Haywood, J., Francis, P., Osborne, S., Glew, M., Loeb, N. and co-authors. 2003. Radiative properties and direct radiative effect of Saharan dust measured by the C-130 aircraft during SHADE: 1. Solar spectrum. J. Geophys. Res. 108(D18), 8577. DOI:10.1029/2002JD002687.
    • Haywood, J. M., Pelon, J., Formenti, P., Bharmal, N., Brooks, M. and co-authors. 2008. Overview of the dust and biomassburning experiment and African Monsoon multidisciplinary analysis special observing period-0. J. Geophys. Res. 113(D00C17). DOI:10.1029/2008JD010077.
    • Heuermann, R., Reuter, R. and Willkomm, R. 1999. RAMSES: a modular multispectral radiometer for light measurements in the UV and VIS. Environ. Sens. Appl. Proc. EUROPTO Series. SPIE. 3821, 279 285.
    • Holben, B. N., Eck, T. F., Slutsker, I., Tanr e´, D., Buis, J. P. and co-authors. 1998. AERONET a federated instrument network and data archive for aerosol characterization. Rem. Sens. Environ. 66, 1 16.
    • Jankowiak, I. and Tanr e´, D. 1992. Satellite climatology of Saharan dust outbreaks. J. Clim. 5, 646 656.
    • Jerlov, N. G. 1976. Marine Optics. Amsterdam, Elsevier.
    • Jimin, Y., Xiaoqing, G., Qi, F., Xiaoyou, Z. and Lianglei, G. 2006. The photosynthetically active radiation during dust storm day in Ejina Oasis. Acta Energiae Solaris Sinica, 5, 488 494.
    • Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D. and co-authors. 1996. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 77, 437 470.
    • Kalu, A. E. 1979. The African Dust Plume: its characteristics and propagation across West Africa in winter. In: Saharan Dust. Mobilization, Transport, Deposition (ed. C. Morales (Hg.)) Papers and Recommendations from a Workshop held in Gothenburg, Sweden, 25 28 April 1977, Chichester, New York, Brisbane, Toronto, pp. 95 118.
    • Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S. K., Hnilo, J. J. and co-authors. 2002. NCEP-DEO AMIP-II reanalysis (R-2). Bull. Am. Meteorol. Soc. 83, 1631 1643.
    • Kasten, F. and Czeplak, G. 1980. Solar and terrestrial radiation dependent on the amount and type of cloud. Sol. Energy. 24, 177 189.
    • Kaufman, Y. J., Koren, I, Remer, L. A., Tanr e´, D., Ginoux, P. and co-authors. 2005. Dust transport and deposition observed from the Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic Ocean. J. Geophys. Res. 110, D10S12. DOI:10.1029/2003JD004436.
    • Kirk, J. T. O. 1977. Use of a quanta meter to measure attenuation and underwater reflectance of photosynthetically active radiation in some inland and coastal south-east Australian waters. Aust. J. Mar. Freshwater Res. 28, 9 21.
    • Kirk, J. T. O. 1994. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge, United Kingdom.
    • Knippertz, P., Tesche, M., Heinold, B., Kandler, K., Toledano, C. and co-authors. 2011. Dust mobilization and aerosol transport from West Africa to Cape Verde a meteorological overview of SAMUM-2. Tellus B. 63(4), 430 477.
    • Lieke, K., Kandler, K., Scheuvens, C., Emmel, C., von Glahn, C. and co-authors. 2011. Particle chemical properties in the vertical column based on aircraft observations in the vicinity of Cape Verde Islands. Tellus B. 63(4), 497 511.
    • Mallet, M., Chami, M., Gentili, B., Sempe´ re´ , R. and Dubuisson, P. 2009. Impact of sea-surface dust radiative forcing on the oceanic primary production: a 1D modeling approach applied to the West African coastal waters. Geophys. Res. Lett. 36, L15828. DOI:10.1029/2009GL039053.
    • Monteith, J. L. 1973. Principles of Environmental Physics. Edward Arnold, London.
    • Morel, A. and Smith, R. C. 1982. Terminology and units in optical oceanography. Mar. Geod. 5(4), 335 349. DOI: 10.1080/ 15210608209379431.
    • Otto, S., Bierwirth, E., Weinzierl, B., Kandler, K., Esselborn, M. and co-authors. 2009. Solar radiative effects of a Saharan dust plume observed during SAMUM assuming spheroidal model particles. Tellus B. 61, 270 296. DOI: 10.1111/j.1600- 0889.2008.00389.x.
    • Pe´ rez-Marrero, J., Llinas, O., Maroto, L., Rueda, M. J. and Cianca, A. 2002. Saharan dust storms over the The Canary Islands during winter 1998 as depicted from the advanced very high-resolution radiometer. Deep-Sea Res. II. 49, 3465 3479.
    • Petzold, A., Veira, A., Mund, M., Esselborn, C., Kiemle, B. and co-authors. 2011. Mixing of mineral dust with urban pollution aerosol over Dakar (Senegal): impact on dust physico-chemical and radiative properties. Tellus B. 63(4), 619 634.
    • Prospero, J. M. and Carlson, T. N. 1972. Vertical and areal distribution of Saharan dust over the Western Equatorial North Atlantic Ocean. J. Geophys. Res. 77, 5255 5265.
    • Prospero, J. M., Glaccum, R. A. and Nees, R. T. 1981. Atmospheric transport of soil dust from Africa to South America. Nature. 289, 570 572.
    • Prospero, J. M. and Lamb, P. J. 2003. African droughts and dust transport to the 638 Caribbean: climate change implications. Science. 302, 1024 1027.
    • Ramanathan, V., Crutzen, P. J., Lelieveld, J., Mitra, A. P., Althausen, D. and co-authors. 2001. The Indian Ocean Experiment: an integrated analysis of the climate forcing and effects of the great Indo-Asian haze. J. Geophys. Res. 106, 28371 28398.
    • Remer, L. A., Tanre´ , D., Kaufman, Y. J., Ichoku, C., Mattoo, S. and co-authors. 2002. Validation of MODIS aerosol retrieval over ocean. Geophys. Res. Lett. 29(12), 8008.
    • Schepanski, K., Tegen, I. and Macke, A. 2009. Saharan dust transport and deposition towards the tropical northern Atlantic. Atmos. Chem. Phys. 9, 1173 1189.
    • Seckmeyer, G., Bais, A., Bernhard, G., Blumthaler, M., Booth, C. R. and co-authors. 2005. Instruments to Measure Solar Ultraviolet Radiation Part 2: Broadband Instruments Measuring Erythemally Weighted Solar Irradiance, WMO GAW Report No. 164, Geneva.
    • Smirnov, A., Holben, B. N., Kaufman, Y. J., Dubovik, O., Eck, T. F. and co-authors. 2002. Optical properties of atmospheric aerosol in maritime environments. J. Atmos. Sci. 59, 501 523.
    • Stephens, G. L. and Tsay, S-C. 1990. On the cloud absorption anomaly. QJR Meteorol. Soc. 116, 671 704.
    • Stramska, M., Stramski, D., Cichocka, M., Cieplak, A. and Wozniak, S. B. 2008. Effects of atmospheric particles from Southern California on the optical properties of seawater. J. Geophys. Res. 113, C08037. DOI:10.1029/2007JC004407.
    • Tanre´ , D., Herman, M. and Kaufman, Y. J. 1996. Information on aerosol size distribution contained in solar reflected radiances. J. Geophys. Res. 101, 19043 19060.
    • Tanre´ , D., Kaufman, Y. J., Herman, M. and Mattoo, S. 1997. Remote sensing of aerosol over oceans from EOS-MODIS. J. Geophys. Res. 102, 16971 16988.
    • Tanre´ , D., Haywood, J., Pelon, J., Le´ on, J. F. and Chatenet, B. 2003. Measurement and modeling of the Saharan dust radiative impact: overview of the Saharan Dust Experiment (SHADE). J. Geophys. Res. 108(D18), 8574. DOI:10.1029/2002JD003273.
    • Tesche, M., Mu¨ ller, D., Gross, S., Ansmann, A., Althausen, D. and co-authors. 2011. Optical and microphysical properties of smoke over Cape Verde inferred from multiwavelength lidar measurements. Tellus B. 63(4), 677 694.
    • Toledano, C., Wiegner, M., Groß, S., Freudenthaler, V., Gasteiger, J. and co-authors. 2011. Optical properties of aerosol mixtures derived from sun-sky radiometry during SAMUM-2. Tellus B. 63(4), 635 648.
    • Udo, S. O. and Aro, T. O. 1999. Global PAR related to global solar radiation for central Nigeria. Agric. For. Meteorol. 97, 21 31.
    • Weinzierl, B., Sauer, D., Esselborn, M., Petzold, A., Veira, A. and co-authors. 2011. Microphysical and optical properties of dust and tropical biomass burning aerosol layers in the Cape Verde region an overview of the airborne in situ and lidar measurements during SAMUM-2. Tellus B. 63(4), 589 618.
    • Willson, R. C. and Mordvinov, A. V. 2003. Secular total solar irradiance trend during solar cycles 21 23. Geophys. Res. Lett. 30(5), 1199. DOI:10.1029/2002GL016038.
    • Wiggert, J. D. and Murtugudde, R. G. 2007. The sensitivity of the Southwest Monsoon phytoplankton bloom to variations in aeolian iron deposition over the Arabian Sea. J. Geophys. Res. 112, c05005. DOI:10.1029/2006JC003514.
    • Wozniak, S. B. and Stramski, D. 2004. Modeling the optical properties of mineral particles suspended in seawater and their influence on ocean reflectance and chlorophyll estimation from remote sensing algorithms. Appl. Opt. 43(17), 3489 3503.
    • Wuttke, S., Naggar, S. E., Bluszcz, T. and Schrems, O. 2007. Shipborne measurements of erythemal UV irradiance and ozone content in various climate zones. Photochem. Photobiol. Sci. 6, 1081 1088.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from