LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Grisogono, Branko; Belušić, Danijel (2009)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article
Subjects:
A gusty downslope windstorm that blows at the eastern Adriatic coast is called bora. Similar winds exist at many other places on virtually all continents. Related hourly mean wind speeds surpassing 20 m s−1, with gusts reaching up to 50 or even 70 m s−1, in the coastal mountain lee areas are common (hurricane speeds). There has been substantial progress in bora observations and measurements, understanding, modelling and its more detailed prediction during the last 25 yr. It was generally thought before that bora was a falling, mostly thermodynamically driven wind; however, (severe) bora is primarily governed by mountain wave breaking. Understandings of bora interactions and influences on other processes have taken place as well, most notably in the air-sea interaction, but are not completed yet. The overall progress mentioned would not be possible without airborne data, non-linear theory and advances in computational techniques, most notably mesoscale numerical models. Some gaps in bora knowledge are also indicated, for example, dynamical transition from weak to moderate to strong to severe bora flows, where the latter are the main subject here, and vice versa. Moreover, the role of the boundary layer and waves on the upwind side of the bora evolution and the consequent lee side flow structures are inadequately understood; this is especially so for bora at the southern Adriatic coast. The focus here is on stronger bora flows at the NE Adriatic coast.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Armi, L. and Mayr, G. J. 2007. Continuously stratified flows across an Alpine crest with a pass: shallow and deep fo¨hn. Quart. J. Roy. Meteorol. Soc. 133, 459-477.
    • A´gu´stsson, H. and O´ lafsson, H. 2007. Simulating a severe windstorm in complex terrain. Meteorol. Z. 16, 111-122.
    • Bajic´, A. 1991. Application of the two-layer hydraulic theory on the severe northern Adriatic bora. Meteorol. Rund. 44, 129-133.
    • Baklanov, A. and Grisogono, B. (eds.), 2007. Atmospheric Boundary Layers: Nature, Theory and Applications to Environmental Modelling and Security. Springer, New York , 241 pp. ISBN-978-0-387-74318- 9.
    • Beg Paklar, G., Isakov, V., Koracˇin, D., Kourafalou, V. and Orlic´, M. 2001. A case study of bora-driven flow and density changes on the Adriatic shelf (January 1987). Cont. Shelf Res. 21, 1751-1783.
    • Beg Paklar, G., Bajic´, A., Dadic´, V., Grbec, B. and Orlic´, M. 2005. Bora-induced currents corresponding to different synoptic conditions above the Adriatic. Ann. Geophys. 23, 1083-1091.
    • Belusˇic´, D. and Klaic´, Z. B. 2004. Estimation of bora wind gusts using a limited area model. Tellus 56A, 296-307.
    • Belusˇic´, D. and Klaic´, Z. B. 2006. Mesoscale dynamics, structure and predictability of a severe Adriatic bora case. Meteorol. Z. 15, 157-168.
    • Belusˇic´, D., Pasaric´, M. and Orlic´, M. 2004. Quasi-periodic bora gusts related to the structure of the troposphere. Quart. J. Roy. Meteorol. Soc. 130, 1103-1121.
    • Belusˇic´, D., Pasaric´, M., Pasaric´, Z., Orlic´, M. and Grisogono, B. 2006. On local and non-local properties of turbulence in the bora flow. Meteorol. Z. 15, 301-306.
    • Belusˇic´, D., Zˇagar, M. and Grisogono, B. 2007. Numerical simulation of pulsations in the bora wind. Quart. J. Roy. Meteorol. Soc. 133, 1371-1388, doi:10.1002/qj.129.
    • Bengtsson, L., Hodges, K. and Roeckner, E. 2006. Storm tracks and climate change. J. Clim. 19, 3518-3543.
    • Brzovic´, N. 1999. Factors affecting the Adriatic cyclone and associated windstorms. Contr. Atmos. Phys. 72, 51-65.
    • Castro, I. P. and Snyder, W. H. 1993. Experiments on wave breaking in stratified flow over obstacles. J. Fluid Mech. 255, 195-211.
    • Cesini, D., Morelli, S. and Parmiggiani, F. 2004. Analysis of an intense bora event in the Adriatic area. Nat. Hazards Earth Syst. Sci. 4, 323- 337.
    • De Wekker, S. F. J. and Whiteman, C. D. 2006. On the time scale of nocturnal boundary layer cooling in valleys and basins and over plains. J. Appl. Meteor. 45, 813-820.
    • Dorman, C. E., Carniel, S. Cavaleri, L., Sclavo, M., Chiggiato, J., and co-authors. 2007. February 2003 marine atmospheric conditions and the bora over the northern Adriatic. J. Geophys. Res. 112, C03S03, doi:10.1029/2005JC003134.
    • Doyle, J. D. and Durran, D. R. 2002. The dynamics of mountain-waveinduced rotors. J. Atmos. Sci. 59, 186-201.
    • Doyle, J. D. and Durran, D. R. 2004. The MAP room: recent developments in the theory of atmospheric rotors. Bull. Am. Meteorol. Soc. 58, 337-342.
    • Doyle, J. D. and Durran, D. R. 2007. Rotor and subrotor dynamics in the lee of three dimensional terrain. J. Atmos. Sci. 64, 4202-4221.
    • Do¨rnbrack, A. 1998. Turbulent mixing by breaking gravity waves. J. Fluid Mech. 375, 113-141.
    • Durran, D. R. 1986. Another look at downslope windstorms, part I: the development of analogs to supercritical flow in an infinitely deep, continuously stratified fluid. J. Atmos. Sci. 43, 2527-2543.
    • Durran, D. R. 1990. Mountain waves and downslope winds. Atmospheric Processes Over Complex Terrain (ed. W. Blumen). Am. Meteorol. Soc. 59-81 (323 pp.).
    • Durran, D. R. 2003. Lee waves and mountain waves. Encyclopedia of Atmospheric Sciences (eds. J. R. Holton, J. Pyle and J. A. Curry). Elsevier Science Ltd., London, 1161-1170.
    • Egger, J. 1990. Thermally forced flows: theory. Atmospheric Processes Over Complex Terrain (ed. W. Blumen). Am. Meteorol. Soc. 43-57 (323 pp.).
    • Enger, L. and Grisogono, B. 1998. The response of bora-type flow to sea surface temperature. Quart. J. Roy. Meteorol. Soc. 124, 1227-1244.
    • Epifanio, C. R. and Durran, D. R. 2001. Three-dimensional effects in high-drag-state flows over long ridges. J. Atmos. Sci. 58, 1051-1065.
    • Farmer, D. M. and Armi, L. 1999. Stratified flow over topography: the role of small-scale entrainment and mixing in flow establishment. Proc. Roy. Soc. London A, 455, 3221-3258.
    • Glasnovic´, D. and Jurcˇec, V. 1990. Determination of upstream bora layer depth. Meteorol. Atmos. Phys. 43, 137-144.
    • Gohm, A. and Mayr, G. J. 2005a. Numerical and observational casestudy of a deep Adriatic bora. Quart. J. Roy. Meteorol. Soc. 131, 1363-1392.
    • Gohm, A. and Mayr, G. J. 2005b. On the bora breakthrough near a mountain gap. Croatian Meteorol. J. 40, 217-220. Available at http://www.map.meteoswiss.ch/map-doc/icam2005/pdf/sesion14/S14-03.pdf
    • Gohm, A., Mayr, G. J., Fix, A. and Giez, A. 2008. On the onset of bora and the formation of rotors and jumps near a mountain gap. Quart. J. Roy. Meteorol. Soc. 134, 21-46.
    • Grisogono, B. 1995. Wave-drag effects in a mesoscale model with a higher-order closure turbulence scheme. J. Appl. Meteor. 34, 941- 954.
    • Grisogono, B. and Enger, L. 2004. Boundary-layer variations due to orographic wave-breaking in the presence of rotation. Quart. J. Roy. Meteorol. Soc. 130, 2991-3014.
    • Grisogono, B. and Oerlemans, J. 2001. Katabatic flow: analytic solution for gradually varying eddy diffusivities. J. Atmos. Sci. 58, 3349-3354.
    • Grisogono, B., Pryor, S. C. and Keislar, R. E. 1993. Mountain wave drag over double bell-shaped orography. Quart. J. Roy. Meteorol. Soc. 119, 199-207.
    • Grisogono, B., Kraljevic´, L. and Jericˇevic´, A. 2007. The low-level katabatic jet height versus Monin-Obukhov height. Quart. J. Roy. Meteorol. Soc. 133, 2133-2136.
    • Grubisˇic´, V. 2004. Bora-driven potential vorticity banners over the Adriatic. Quart. J. Roy. Meteorol. Soc. 130, 2571-2603.
    • Grubisˇic´, V. and Orlic´, M. 2007. Early observations of rotor clouds by Andrija Mohorovicˇic´. Bull. Amer. Meteorol. Soc. 88, 693-700.
    • Heimann, D. 2001. A model-based wind climatology of the eastern Adriatic coast. Meteorol. Z. 10, 5-16.
    • Hertenstein, R. F. and Kuettner, J. P. 2005. Rotor types associated with steep lee topography: influence of the wind profile. Tellus 57A, 117- 135.
    • Holmboe, J. and Klieforth, H. 1957. Investigation of mountain lee waves and the air flow over the Sierra Nevada. Final Report, Dept. of Meteorol., UCLA, , 290 pp.
    • Holton, J. R. 2004. An Introduction to Dynamic Meteorology 4th Edition. Elsevier, Academic Press. Inc., Amsterdam , 535 pp.
    • Horvath, K., Fita, L., Romero, R. and Ivancˇan-Picek, B. 2006. A numerical study of the first phase of a deep Mediterranean cyclone: cyclogenesis in the lee of the Atlas Mountains. Meteorol. Z. 15, 133- 146.
    • Horvath, K., Lin, Y.-L. and Ivancˇan-Picek, B. 2008. Classification of cyclone tracks over Apennines and the Adriatic sea. Mon. Wea. Rev. 136, 2210-2227.
    • Houghton, D. D. and Kasahara, A. 1968. Nonlinear shallow fluid flow over an isolated ridge. Commun. Pure Appl. Math. 21, 1-23.
    • Hunt, J. C. R., Feng, Y., Linden, P. F., Greenslade, M. D. and Mobbs, S. D. 1997. Low-Froude-number stable flows past mountains. Il Nuovo Cimento 20, 261-272.
    • Hunt, J. C. R., O´lafsson, H. and Bougeault, P. 2001. Coriolis effects on orographic and mesoscale flows. Quart. J. Roy. Meteorol. Soc. 127, 601-633.
    • Ivancˇan-Picek, B. and Tutisˇ, V. 1995. Mesoscale bora flow and mountain pressure drag. Meteorol. Z. (N.F.) 4, 119-128.
    • Ivancˇan-Picek, B. and Tutisˇ, V. 1996. A case study of a severe Adriatic bora on 28 December 1992. Tellus 48A, 357-367.
    • Ivatek-Sˇ ahdan, S. and Ivancˇan-Picek, B. 2006. Effects of different initial and boundary conditions in ALADIN/HR simulations during MAP IOPs. Meteorol. Z. 15, 187-197.
    • Ivatek-Sˇ ahdan, S. and Tudor, M. 2004. Use of high-resolution dynamical adaptation in operational suite and research impact studies. Meteorol. Z. 13, 99-108.
    • Jiang, Q. F. and Doyle, J. D. 2005. Wave breaking induced surface wakes and jets observed during a bora event. Geophys. Res. Let. 32, L17807, doi:10.1029/2005GL022398.
    • Jurcˇec, V. 1981. On mesoscale characteristics of Bora conditions in Yugoslavia. Pure Appl. Geophys. 119, 640-657.
    • Jurcˇec, V. and Viskovic´, S. 1994. Mesoscale characteristics of southern Adriatic bora storms. Geofizika 11, 33-46. Available at http://geofizika-journal.gfz.hr/vol11.htm
    • Kim, J. and Mahrt, L. 1992. Momentum transport by gravity waves. J. Atmos. Sci. 49, 735-748.
    • Klaic´, Z. B., Belusˇic´, D., Grubisˇic´, V., Gabela, L. and C´ oso, L. 2003. Mesoscale airflow structure over the northern Croatian coast during MAP IOP 15-a major bora event. Geofizika 20, 23-61. Available at http://geofizika-journal.gfz.hr/vol20.htm
    • Klemp, J. B. and Durran, D. R. 1987. Numerical modelling of Bora winds. Meteorol. Atmos. Phys. 36, 215-227.
    • Kraljevic´, L. and Grisogono, B. 2006. Sea-surface temperature effects on 3D bora-like flow. Meteorol. Z. 15, 169-177.
    • Kuettner, J. P. 1938. Moazagotl and Foehn wave (Moazagotl und Fo}hnwelle). Cont. Atmos. Phys. 25, 79-114.
    • Kuzmic´, M., Janekovic´, I., Book, J. W., Martin, P. J. and Doyle, J. D. 2006. Modeling the northern Adriatic double-gyre response to intense bora wind: a revisit. J. Geophys. Res. 111, C03S13, doi:10.1029/2005JC003377.
    • Lazic´, L. and Tosˇic´, I. 1998. A real data simulation of the Adriatic bora and the impact of mountain height on bora trajectories. Meteorol. Atmos. Phys. 66, 143-155.
    • Lilly, D. K. 1978. A severe downslope windstorm and aircraft turbulence event induced by a mountain wave. J. Atmos. Sci. 35, 59-77.
    • Long, R. R. 1954. Some aspects of the flow of stratified fluids, II: experiments with a two-fluid system. Tellus 6, 97-115.
    • Mayr, G. J., Armi, L., Gohm, A., Za¨ngl, G., Durran, D. R. and co-authors. 2007. Gap flows: results from the Mesoscale Alpine Programme. Quart. J. Roy. Meteorol. Soc. 133, 881-896.
    • Miranda, P. M. A. and James, I. N. 1992. Non-linear three-dimensional effects on gravity wave drag: splitting flow and breaking waves. Quart. J. Roy. Meteorol. Soc. 118, 1057-1081.
    • Mohorovicˇic´, A. 1889. Interesting cloud pictures over the Bay of Buccari (with a comment from the editor J. Hann) (Interessante Wolkenbildung ber der Bucht von Buccari). Meteorol. Z. 24, 56-58.
    • Morelli, S. and Berni, N. 2003. On a bora event simulated by the Eta model. Meteorol. Atmos. Phys. 84, 11-22.
    • Nappo, C. J. 2002. An Introduction to Atmospheric Gravity Waves. Academic Press, San Diego, USA , 276 pp.
    • Orlic´, M., Kuzmic´, M. and Pasaric´, Z. 1994. Response of the Adriatic Sea to the bora and sirocco forcing. Continent. Shelf Res. 14, 91- 116.
    • Orlic´, M., Dadic´, V., Grbec, B., Leder, N., Marki, A., and co-authors. 2007. Wintertime buoyancy forcing, changing seawater properties, and two different circulation systems produced in the Adriatic. J. Geophys. Res. C3, 1-21.
    • O´lafsson, H. 2000. The impact of flow regimes on asymmetry of orographic drag at moderate and low Rossby numbers. Tellus 52A, 365- 379.
    • O´lafsson, H. and Bougeault, P. 1996. Nonlinear flow past an elliptic mountain ridge. J. Atmos. Sci. 53, 2465-2489.
    • O´lafsson, H. and Bougeault, P. 1997. The effect of rotation and surface friction on orographic drag. J. Atmos. Sci. 54, 193-210.
    • Pan, F. and Smith, R. B. 1999. Gap winds and wakes: SAR observations and numerical simulations. J. Atmos. Sci. 56, 905-923.
    • Pasaric´, M. and Orlic´, M. 2004. Meteorological forcing of the Adriatic: present vs. projected climate conditions. Geofizika 21, 69-87.
    • Pedlosky, J. 1987. Geophysical Fluid Dynamics 2nd Edition. SpringerVerlag, New York . 710 pp.
    • Petkovsˇek, Z. 1982. Gravity waves and bora gusts. Ann. Meteorol. (N.F.) 19, 108-110.
    • Petkovsˇek, Z. 1987. Main bora gusts-a model explanation. Geofizika 4, 41-50. Available at http://geofizika-journal.gfz.hr/vol04.htm Petkovsˇek, Z. 1990. Upper boundary of the bora as a stationary frontal surface. Meteorol. Atmos. Phys. 43, 197-202.
    • Pettersen, S. 1956. Weather analysis and forecasting Volume 1. McGraw-Hill, New York , 428 pp.
    • Pierrehumbert, R. T. and Wyman, B. 1985. Upstream effects of mesoscale mountains. J. Atmos. Sci. 42, 977-1003.
    • Poje, D. 1992. Wind persistence in Croatia. Int. J. Clim. 12, 569-586.
    • Pullen, J., Doyle, J. D., Hodur, R., Ogston, A., Book, J. W. and coauthors. 2003. Coupled ocean-atmosphere nested modeling of the Adriatic Sea during winter and spring 2001. J. Geophys. Res. 108, 3320, doi:10.1029/2003JC001780.
    • Pullen, J., Doyle, J. D. and Signell, R. P. 2006. Two-way air-sea coupling: a study of the Adriatic. Mon. Wea. Rev. 134, 1465-1483.
    • Pullen, J., Doyle, J. D., Haack, T., Dorman, C. D., Signell, R. P., and coauthors. 2007. Bora event variability and the role of air-sea feedback. J. Geophys. Res. 112, C03S18, doi:10.1029/2006JC003726.
    • Qian, M. W. and Giraud, C. 2000. A preliminary numerical simulation of bora wind with a limited area model of atmospheric circulation. Il Nouvo Cimento 23C, 515-523.
    • Queney, P. 1948. The problem of air flow over mountains: a summary of theoretical studies. Bull. Am. Meteorol. Soc. 29, 16-26.
    • Rakovec, J. 1987. Preliminary report on spectral characteristics of bora on the island of Rab. Geofizika 4, 35-40. Available at http://geofizikajournal.gfz.hr/vol04.htm.
    • Rotach, M. and Zardi, D. 2007. On the boundary-layer structure over highly complex terrain: key findings from MAP. Quart. J. Roy. Meteorol. Soc. 133, 937-948.
    • Scha¨r, C. and Durran, D. R. 1997. Vortex formation and vortex shedding in continuously stratified flows past isolated topography. J. Atmos. Sci. 54, 534-554.
    • Scha¨r, C. and Smith, R. B. 1993a. Shallow-water flow past isolated topography, part I: vorticity production and wake formation. J. Atmos. Sci. 50, 1373-1340.
    • Scha¨r, C. and Smith, R. B. 1993b. Shallow-water flow past isolated topography, part II: transition to vortex shedding. J. Atmos. Sci. 50, 1341-1412.
    • Scinocca, J. F. and Peltier, W. R. 1994. The instability of Long's stationary solution and the evolution toward severe downslope windstorm flow, part II: the application of finite-amplitude local wave-activity flow diagnostics. J. Atmos. Sci. 51, 623-653.
    • Scorer, R. S. and Klieforth, H. 1959. Theory of mountain waves of large amplitude. Quart. J. Roy. Meteorol. Soc. 85, 131-143.
    • Smith, R. B. 1979a. The influence of the Earth's rotation on mountain wave drag. J. Atmos. Sci. 36, 177-180.
    • Smith, R. B. 1979b. The influence of mountains on the atmosphere. Adv. Geophys. 21, 87-230.
    • Smith, R. B. 1985. On severe downslope winds. J. Atmos. Sci. 42, 2597- 2603.
    • Smith, R. B. 1987. Aerial observations of the Yugoslavian Bora. J. Atmos. Sci. 44, 269-297.
    • Smith, R. B. 1989. Hydrostatic airflow over mountains. Adv. Geophys. 31, 1-41.
    • Smith, R. B. 1991. Kelvin-Helmholtz instability in severe downslope wind flow. J. Atmos. Sci. 48, 1319-1324.
    • Smith, R. B. 2002. Stratified flow over topography. Environmental Stratified Flows. (ed. R. Grimshaw) Kluwer, 284 pp 119-159.
    • Smith, R. B. and Grøna˚s, S. 1993. Stagnation points and bifurcation in 3-D mountain airflow. Tellus 45A, 28-43.
    • Smith, R. B. and Sun, J. 1987. Generalized hydraulic solutions pertaining to severe downslope winds. J. Atmos. Sci. 44, 2934-2939.
    • Smith, R. B., Doyle, J. D., Jiang, Q. and Smith, S. A. 2007. Alpine gravity waves: lessons from MAP regarding mountain wave generation and breaking. Quart. J. Roy. Meteorol. Soc. 133, 917-936.
    • Sprenger, M. and Scha¨r, C. 2001. Rotational aspects of stratified gap flows and shallow fo¨hn. Quart. J. Roy. Meteorol. Soc. 127, 161-187.
    • Tosˇic´, I. and Lazic´, L. 1998. Improved bora wind simulation using a nested Eta model. Meteorol. Atmos. Phys. 66, 1-10.
    • Trigo, I. F., Trevor, D., Davies, H. C. and Bigg, G. R. 1999. Objective climatology of cyclones in the Mediterranean region. J. Clim. 12, 1685-1696.
    • Tutisˇ, V. and Ivancˇan-Picek, B. 1991. Pressure drag on the Dinaric Alps during the ALPEX SOP. Meteorol. Atmos. Phys. 47, 73-81.
    • Vinnichenko, N. K., Pinus, N. Z., Shmeter, S. M. and Shur, G. N. 1980. Turbulence in the Free Atmosphere (The 1st Edition in 1968; translated from Russian). Consultants Bureau, N.Y., 310 pp.
    • Volkert, H., Scha¨r, C. and Smith, R. B. 2007. Editorial: “MAP findings”. Quart. J. Roy. Meteorol. Soc. 133, 809-810.
    • Vosper, S. B. 2004. Inversion effects on mountain lee waves. Quart. J. Roy. Meteorol. Soc. 130, 1723-1748.
    • Wang, T. A. and Lin, Y. L. 1999. Wave ducting in a stratified shear flow over a two-dimensional mountain, part II: implications for the development of high-drag states for severe downslope windstorms. J. Atmos. Sci. 56, 437-452.
    • Whiteman, C. D. 2000. Mountain Meteorology: Fundamentals and Applications. Oxford University Press, New York , 355 pp.
    • Wippermann, F. K. 1981. The applicability of several approximations in meso-scale modelling-a linear approach. Contrib. Atmos. Phys. 54, 298-308.
    • Yoshino, M. M. (ed.) 1976. Local Wind Bora. University of Tokyo Press, Tokyo , 289 pp.
    • Zecchetto, S. and Cappa, C. 2001. The spatial structure of the Mediterranean Sea winds revealed by ERS-1 scatterometer. Int. J. Remote Sens. 22, 45-70.
    • Za¨ngl, G. 2002. Stratified flow over a mountain with a gap: linear theory and numerical simulations. Quart. J. Roy. Meteorol. Soc. 128, 927- 9949.
    • Za¨ngl, G. 2005. Dynamical aspects of wintertime cold-air pools in an Apline valley system. Mon. Wea. Rev. 133, 2721-2740.
    • Za¨ngl, G. and Hornsteiner, M. 2007. Can trapped gravity waves be relevant for severe foehn windstorms? A case study. Meteorol. Z. 16, 203-212.
    • Zˇagar, M. and Rakovec, J. 1999. Small scale surface wind prediction using dynamical adaptation. Tellus 51A, 489-504.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article

Collected from