Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Kuss, Joachim; Nagel, Klaus; Schneider, Bernd (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Surface water total CO2 concentrations (CT) and the CO2 partial pressure of the surface water and in the atmosphere were measured in the eastern Gotland Sea at approximately monthly intervals during five cruises in the winter of 1999/2000. Taking into account vertical/lateral exchange processes and the decomposition of organic matter, the monthly changes in CT were used to determine CO2evasion fluxes. In addition, the CO2 fluxes were calculated on the basis of the CO2 partial pressure differences using local wind speed (u) records and different currently applied parametrizations of the gas exchange transfer velocity (k). The latter resulted in substantially lower monthly fluxes that indicated a considerable underestimation of k from the k(u) functions used. To achieve an optimal agreement between the flux calculations and the balance-derived CO2 fluxes, the coefficients of both a simple quadratic and cubic function k(u) were iterated using a least-squares fitting procedure. The resulting equations, which refer to short-term wind data and to the CO2 exchange at 20 °C, were k= (0.45 ± 0.10)u2 and k= (0.037 ± 0.008)u3 (k, cm h−1; u, m s−1). These yielded higher k values than most of the previously proposed parametrizations. Unfortunately, our data did not allow us to decide whether the quadratic or cubic function is more appropriate to describe the gas exchange dynamics.DOI: 10.1111/j.1600-0889.2004.00092.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Bakker, D. and Watson, A. 2001. A piece in the CO2 jigsaw. Nature 410, 765-766.
    • Broecker, W. S. and Peng, T.-H. 1974. Gas exchange rates between air and sea. Tellus 26, 21-35.
    • Emelyanov, E. M. 2001. Biogenic components and elements in sediments of the Central Baltic and their redistribution. Mar. Geol. 172, 23-41.
    • Feely, R. A., Wanninkhof, R., Hansell, D. A., Lamb, M. F., Greeley, D. and Lee, K. 2001. Water column CO2 measurements during Gas Ex-98 expedition. In: Gas Transfer at Water Surfaces Vol. 127 (eds. M. A. Donelan, W. M. Drennan, E. S. Saltzman and R. Wanninkhof), American Geophysical Union, 173-180.
    • Frew, N. M. 1997. The role of organic films in air-sea gas exchange. In: The Sea Surface and Global Change (eds. P. S. Liss and R. A. Duce), Cambridge University Press, Cambridge, 121-171.
    • HELCOM, 1986. Water balance of the Baltic Sea. In: Baltic Sea Environment Proceedings Vol. 16. The Baltic Marine Environment Protection Commission, Helsinki, Finland.
    • Jacobs, C. M. J., Kohsiek, W. and Oost, W. A. 1999. Air-sea fluxes and transfer velocity of CO2 over the North Sea: results from ASGAMAGE. Tellus 51B, 629-641.
    • Johnson, K. M., Wills, K. D., Butler, D. B., Johnson, W. K. and Wong, C. S. 1993. Coulometric total carbon dioxide analysis for marine studies: maximizing the performance of an automated gas extraction system and coulometric detector. Mar. Chem. 44, 167-187.
    • Keeling, R. F. 1993. On the role of large bubbles in air-sea gas exchange and supersaturation in the ocean. J. Mar. Res. 51, 237-271.
    • Ko¨rtzinger, A., Thomas, H., Schneider, B., Gronau, N., Mintrop, L. and Duinker, J. C. 1996. At-sea intercomparison of two newly designed underway pCO2 systems - encouraging results. Mar. Chem. 52, 133- 145.
    • Lass, H. U., Prandke, H. and Liljebladh, B. 2003. Dissipation in the Baltic Proper during winter stratification. J. Geophys. Res. 108, 3187, doi:10.1029/2002JC001401.
    • Leinweber, A. 2002. Saisonaler Kohlenstoffkreislauf im Oberfla¨chenwasser der zentralen Ostsee - Numerische Prozessstudien zur Simulation des CO2-Partialdrucks. Institut fu¨r Ostseeforschung Warnemu¨nde, Warnemu¨nde, Germany.
    • Liss, P. S. and Merlivat, L. 1986. Air-sea gas exchange rates: introduction and synthesis. In: The Role of Air-sea Exchange in Geochemical Cycling Vol. 185 (ed. P. Buat-Me´nard), Reidel, Dordrecht, 113-127.
    • Liss, P. S. and Slater, P. G. 1974. Flux of gases across the air-sea interface. Nature 247, 181-184.
    • McGillis, W. R., Edson, J. B., Hare, J. E. and Fairall, C. W. 2001. Direct covariance air-sea CO2 fluxes. J. Geophys. Res. 106, 16 729-16 745.
    • Nightingale, P. D., Malin, G., Law, C. S., Watson, A. J., Liss, P. S., Liddicoat, M. I., Boutin, J. and Upstill-Goddard, R. C. 2000. In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers. Global Biogeochem. Cycles 14, 373-387.
    • Pavia, E. G. and O'Brien, J. J. 1986. Weibull statistics of wind speed over the ocean. J. Climate Appl. Meteorol. 25, 1324-1332.
    • Schneider, B., Nagel, K., Thomas, H. and Rebers, A. 1999. The Baltic Sea CO2 budget: do we need a new parameterization of the CO2 transfer velocity? Proceedings of the 2nd International Symposium on CO2 in the Oceans, Center for Global Environmental Research, Tsukuba, Japan, CGER-I037, 289-292.
    • Schneider, B., Nausch, G., Nagel, K. and Wasmund, N. 2003. The surface water CO2 budget for the Baltic Proper: a new way to determine nitrogen fixation. J. Mar. Syst. 42, 53-64.
    • Smedman, A., Ho¨gstro¨m, U., Bergstro¨m, H., Rutgersson, A., Kahma, K. K. and Pettersson, H. 1999. A case study of air-sea interaction during swell conditions. J. Geophys. Res. 104, 25 833-25 851.
    • Smethie, W. M. J., Takahashi, T., Chipman, D. W. and Ledwell, J. R. 1985. Gas exchange and CO2 flux in the tropical Atlantic Ocean determined from 222Rn and pCO2 measurements. J. Geophys. Res. 90, 7005-7022.
    • Suzuki, Y., Tanoue, E. and Ito, H. 1992. A high-temperature catalytic oxidation method for the determination of dissolved organic carbon in seawater: analysis and improvement. Deep-Sea Res. 39, 185-198.
    • Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N., Tillbrook, B., Bates, N., Wanninkhof, R., Feely, R. A., Sabine, C., Olafsson, J. and Nojiri, Y. 2002. Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Res. II 49, 1601-1622.
    • Tans, P. P., Fung, I. Y. and Takahashi, T. 1990. Observational constraints on the global atmospheric CO2 budget. Science 247, 1431-1438.
    • Wanninkhof, R. 1992. Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res. 97, 7373-7382.
    • Wanninkhof, R. and McGillis, W. R. 1999. A cubic relationship between air-sea CO2 exchange and wind speed. Geophys. Res. Lett. 26, 1889- 1892.
    • Wasmund, N., Pollehne, F., Postel, L., Siegel, H. and Zettler, M. L. 2001. Biologische Zustandseinscha¨tzung der Ostsee im Jahre 2000. Institut fu¨r Ostseeforschung Warnemu¨nde, Warnemu¨nde, Germany.
    • Wasmund, N., Pollehne, F., Postel, L., Siegel, H. and Zettler, M. L. 2002. Biologische Zustandseinscha¨tzung der Ostsee im Jahre 2001. Institut fu¨r Ostseeforschung Warnemu¨nde, Warnemu¨nde, Germany.
    • Weiss, R. F. 1974. Carbon dioxide in water and seawater: The solubility of a non-ideal gas. Mar. Chem. 2, 203-215.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from