LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Maluszynska, G. M.; Magnusson, K. -E.; Rosenquist, Å. (2011)
Publisher: Microbial Ecology in Health and Disease
Journal: Microbial Ecology in Health and Disease
Languages: English
Types: Article
Subjects:
Pyelonephritis-associated pili (pap) gene expression is subject to a phase variation control mechanism by which cells alternate between two pili-expression states, viz. a 'phase-off (pili-) and a 'phase-on' (pili+) state. During interaction with a host, Escherichia coli encounter various environmental redox conditions. We have addressed the question of whether bacteria are able to respond to this environmental signal by regulating pap pili biogenesis, a crucial colonisation factor in pyelonephritis. Transcription from the PapB promoter (papBAp) was studied in the Salmonella typhimurium papBAp lac fusion lysogen strain under aerobic, microaerobic and anaerobic conditions. In this strain, the  β-galactosidase gene is under the control of the papB promoter that initiates transcription of both the papB gene encoding the regulatory papB protein and the papA gene encoding the structural pilin protein. The frequency of switching rrom the Lac+ (papBAp 'on') to the Lac-. (papBAp 'off) state was about 1-3-fold higher when the environmental redox potential was reduced by changing from aerobic to microaerobic and anaerobic growth milieus. The β-galactosidase activity representing the rate of transcriptional initiation from the papB promoter was, as calculated pcr 108 Lac+ bacteria, more than 12-fold higher in acrobically cultivated bacteria than in bacteria cultured undcr microaerobic or anaerobic conditions. Pap pili adhesin expression was measured under the same redox conditions, using E. coli K12 HB101 pPap 5 containing a plasmid coding for whole pap pili operon. The strongest pap pili expression, measured as agglutination of latex gal-gal beads, was observed under microaerobic conditions similar to those found in the urinary tract. Under anaerobic conditions like those prevalent in the intestine, pap pili expression was negligible. This is not surprising, since such expression would not represent an ecological advantage for E. coli. In fact, repression of these types of fimbriae under anaerobic conditions may be a way in which the bacteria can save energy which can then be used to promote growth. Although the two genetic models used for transcription and expression studies are distinct, a high rate of transcription did not seem to correlate with optimal pili expression. This may indicate the importance of the post-transcriptional processing in pap pili expression.Keywords: Pilus gene regulation; Growth conditions; Aerobic; Anaerobic; Microaerobic; Adhesion.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Biga M, Goransson M. Normark S. Uhlin BE. (1985). Transcriptional activation of Pap pilus virulence operon from uropathogenic Escherichiu coli. E M B O Journ~iI4, 3887-3894.
    • 2. BBga M, Goransson M. Normark S, Uhlin BE. (1988). Processed mRNA with differential stability in the regulation of E. coli pilin gene expression. Cell 52, 197-206.
    • 3. Blyn LB, Braaten BA, White-Ziegler CA, Rolfson DH, Low DA. (1989). Phase variation of pyelonephritis-associated pili in Escherichici coli:evidence for transcriptional regulation. EMRO Journal 8, 613-620.
    • 4. Boyer HW, Roulland-Dussoix D. (1969). A complementation analysis of the restriction and modification of DNA in Escherichia coil. Jourriul of' Moleculur Biology 41,459472.
    • 5. Braaten BA, Blyn LB, Skinner BS, Low DA. ( I 991 ). Journul ofBacteriologj, 173, 1789-1 800.
    • 6. Ernst RK, Dombrowski DM, Merrick JM. (1990). Anacrobiosis, type I fimbriae, and growth phase are factors that affect invasion of HEp-L cells by Snlmonella t j phimurium. Infection and Inimuniq 58, 20 14-20 1 6.
    • 7. Forsman K, Gorasson M, Uhlin BE. (1989). Autoregulation and multiple DNA interactions by a transcriptional regulatory protcin i n E. coli pili biogenesis. EMBO Journal8, 1271-1277.
    • 8. Forsman K . (1991). Transcriptional Activation of Pili-adhesins in Uropathogenic E.dierichia coli: Regulators and Molecular Interactions. U m e i University Medical Dissertations, New Series No. 327. Department of Microbiology, University of Umei, Sweden.
    • 9. Goldner M, Penn CW, Sanyal SC, Veale DR, Smith H. ( 1979). Phenotypically determined resistance of Neisserici gonorrhoeue to normal human serum: environmental factors in subcutaneous chambers in guinea pigs. Journal of Generul Microhiologj. 114, 169-1 77.
    • 10. Goransson M, Uhlin BE. (1984). Environmental temperature regulates transcription of a virulence pili operon in E. coli. E M B O Journal3,2885-2888.
    • 11. Goransson M, Forsman K, Uhlin BE. (1989). Regulatory genes in the thermoregulation of Escherichiu coli pili genc transcription. Genes und Deidopmeiit 3, 123-1 30.
    • 12. Goransson M, Forsman K , Nilsson P, Uhlin BE. (1989). Upstream activating sequences that are shared by two divergently transcribed operons mediate CAMP-CRP regulation of pilus-adhesin in Escherichia coli. Molecular Microhiologj~ 3, 1557-1565.
    • 13. Goransson M. Sonden B. Nilsson P. Dagberg B. of A ctinohac,illLisi i c ~ r i i i o m ~ ~ c e t ~ ~ n i ~(~H~are~m~oi-t u t i ~ s Forsniun K . Uhlin BE. (1990). Transcriptional philus actinotnj.cetcni cornitcitis . I n f it ~ioti mid silcncing and therniorcgulation of gene expression Irnniunitj. 2320-2323. in E.si lrc~r.ic~Iiircr,oli. Nrirurc 344, 682-685. 26. Schaechter M. Maaloe 0, Kjeldgaard NO. (1958).
    • 14 Hanswn GC. Sinions K. van Meer G . (1986). Dependency on medium and temperature of cell size Two strains of' the Madin-Darby canine kidney and chemical composition during balanced growth ( M D C K ) cell line have distinct glycosphingolipid of Salmonellr tjphitnurium. Journal of Genrrcil compositions. E M B O Joiir.mil 5 , 4 8 3 4 8 9 . Microhiologj. 19, 592-606.
    • 15. Harkki A. Palva ET. (1985). A lam B expression 27. Schiemann DA, Shope SR. (1991). Anaerobic plasniid for extending the host range of phage A. to growth of Salnionellu typhimurium results in other ent erobact eria F E M S Microhiologj, I,ctfcr.s increased uptake by Henle 407 epithelial and niouse 27.183 187. peritoneal cells iri ibitro and repression of a major
    • 16. Hart1 D L . Dykhuizen DE. (1984). The population outer membrane protein. Infection otid Itnmunitj. 59, genetics of E.dicrichiti c d i . Atiniral R e ~ i e w of 437440. G ~ t i ~ r i1c8~,3. 1~-68. 28 Schulze F, Jacob HE. (1981). Das Redoxpotential
    • 17. Jacobs AAC. de Graaf F K . (1985). Production o f im Magen-Darm-Kana1 von Schweinen unterK88. K99 and F 41 fibrillae in relation to growth schiedlichen Alters. .4rciiiv esperitnentell~V~eterinerphase. and a rapid procedure for adhesin purifi- tnediiien, Leipzic~g35, 349-357. cation. F E M S Mic~rohiologLj~ettrrs 26, 15-19. 29. Simons, K . (1987). Membrane traffic in epithelial
    • 18. Lcc C'A, Falkow S. (1990).The ability of Si/t?rotic//u cell line derived from the dog kidney. KiiiniJjx to cntcr mammalian cells is affected by bacterial International32 (suppl 23), S201 S207. gron t h state. Proc~rditig.cof' the Ncitional Ai,rrtletrrj, 30. Smith MW. Neidhardt FC. (1983). Proteins induced of Sc ieric,r.c o f ' flic. ( l r i i t c ) d Stutes of Atncvir~i87, by anaerobiosis in Esche~richicr coli. Journal of' 4304 4308. Bacreriologj, 154, 3315343.
    • 19. Maar AG. (1991). Growth rate of E.scherichiri c d i . 31. Smith MW, Neidhardt FC. (1983b). Proteins M i ~ ~ ~ ~ hRiP~V ~~P Hl5 5.oS,3~16~-3i33~. ~ ~ l induced by anaerobiosis in Escherichici coli. Journal
    • 20. Maluszynska G M . Magnusson K-E, Stendahl 0. of' Bacreriologj. 154, 344-350. Lock R. Kniola B. (1988). Reduced redox potential 32. Stromberg N, Marklund BI, Lund B, llver D, during growth of some Gram-negative b x t e r i a . Hammers A. Gaastra W, Karlson KA. Normark S . Effect on thc biochemical and physicocheinical ( 1990). Host-specificity of uropathogenic Escherisurface propcrtics and phagocytosis by polynior- (hie colidepends on differences in binding specificity phon uclear leukocytes. .4ctii Prrrhologicci . M i ~ , r o - to Gal 1-4 Gal-containing isoreceptors. E M B O hiologicei et It?rt?iutrolo~i(,Slrc~untlinuvica96, 773 -7X2. Journal9,200 1-20 10.
    • 21. Meyncll GG. ( 1963). Antibacterial mechanism o f 33. Van der Woude MW, Arts PA, Bakker D, van the mouse gut. 11. The role of Eh and volatile Verscvcld HW. de Graaf F K . (1990). Growth-ratefatty acids in the normal gut. British Joirrncrl o/ dependcnt synthesis of K99 finibrial subunits i s ~ . \ p ~ r ~ ~ l l ~ Ptrtitrhroillog,l~44, 209-2 14. regulated a t the level of transcription. Journal of'
    • 22. Millei- JH. ( 1972). E~perirnents iri Molwrtlrir General Microhiologj, 136, 897-903. Gcrirric~s.Cold Spring Harbor Laboratory Prcss. 34 Van Verseveld HW, Bakker P, van der Woude T, Cold Spring Harbor. New York, pp. 3 5 1 4 3 I Tcrleth C, de Graaf FK. (1985). Production of
    • 23. Nilsson P, Uhlin BE. (1991). Diffcrcntial decay ol'a fimbrial adhesins K99 and F41 by cntcrotoxigenic polycistronic Esc~lieric~hicuiili transcript is initiated Escherichiu c.o/i as a function of growth-rate by RNasc E-dependent endonuclcolytic processing. domain. I?zfizc,riotmiil Imimunitjx 49, 159-1 63. Molt~c~rrlrMric.rohio1og.l5., 1791-1 799. 35 Visser R G F . Hellingwcrf KJ, Konings WN. (1984).
    • 24. Pearcc WA. Buchanan T M . (1980). Structure and The protein composition of the cytoplasmic memcell membrane binding properties of bacterial brane of aerobically and anaerobically grown finibriac. In: Heachey EH (ed) Rc~ceptor. ~tirid Escherickia i d . Joiinicd of' Bioc~er,qetirs and Rwogtiirion s t v k s B. Vol 6. B~ic~reriir,l4dlrert~r(.r. Biotnem1~ra~ie1.6r, 295-307. Chapman and Hall. London, pp. 289-344. 36. White-Ziegler CA. Blyn LB. Braaton BA. Low DA.
    • 25. Scannapieco FA. Millar SJ. Reynolds HS, Zambon ( 1990). Identification of an E,sckerichia c d i gcnctic JJ. l.evine MJ. (1987). Effect of anaerobiosis o n locus involved in thermoregulation of the pup the \urface ultrastructure and surface proteins operon. Joiirriul of' Bcrcteriology 172, 1775-1 782.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from