LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Trevisan, Anna; Legnani, Roberto (2011)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article
Subjects:
Lorenz's three-variable convective model is used as a prototypical chaotic system in order to develop concepts related to finite time local predictability. Local predictability measures can be represented by global measures only if the instability properties of the attractor are homogeneous in phase space. More precisely, there are two sources of variability of predictability in chaotic attractors. The first depends on the direction of the initial error vector, and its dependence is limited to an initial transient period. If the attractor has homogeneous predictability properties, this is the only source of variability of error growth rate and, after the transient has elapsed, all initial perturbations grow at the same rate, given by the first (global) Lyapunov exponent. The second is related to the local instability properties in phase space. If the predictability properties of the attractor are not homogeneous, this additional source of variability affects both the transient and post-transient phases of error growth. After the transient phase all initial perturbations of a particular initial condition grow at the same rate, given in this case by the first local Lyapunov exponent. We consider various currently used indexes to quantify finite time local predictability. The probability distributions of the different indexes are examined during and after the transient phase. By comparing their statistics it is possible to discriminate the relative importance of the two sources of variability of predictability and to determine the most appropriate measure of predictability for a given forecast time. It is found that a necessary premise for choosing a relevant local predictability index for a specific system is the study of the characteristics of its transient. The consequences for the problem of forecasting forecast skill in operational models are discussed.DOI: 10.1034/j.1600-0870.1995.00006.x
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from