Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Korb, Günther; Zdunkowski, Wilford (2011)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article
This study deals with the distribution of solar and infrared radiation in a multiple scattering and absorbing fog consisting of water droplets and water vapor. An iterative solution of the radiative transfer equation, as formulated by Chandrasekhar (1960), is presented here, which is utilized to obtain radiative intensities, fluxes and their vertical divergence for the entire infrared spectrum. A sufficient number of sample computations is carried out also in the solar spectrum such as to verify the applicability of the numerical procedure for the entire heat spectrum. All calculations are made for two fog models, representing low and high fog for a liquid cloud water concentration of 0.1 g per cubic meter. The exact structure of spectral lines is taken into account. Computational results verify the applicability of the method for the entire spectrum for a fog extending to a height of at least 160 m. It is believed that the computational procedure as developed is capable also of obtaining information about the radiative behavior of clouds and fogs of far greater thickness.DOI: 10.1111/j.2153-3490.1970.tb00497.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Best, A. C. 1951. Drop-sizedistribution in cloud and fog. Q . J. Royal Meteorol. SOC.418.
    • Chandraaekhar, S . 1960. Radiative Tranafer, pp. 1-12, 149-151. Dover Publications, Inc., New York.
    • Coulson, Kinsell L., Jitendra, V. Dave & Zdenek, Sekera 1960: Tables Related to Radiation Emerging from a Planetaq Atmaphere with Rayleigh Scattering. 548 pp. University of California Press, Berkeley and Los Angeles.
    • Deirmendjian, D. 1955. The optical thickness of the molecular atmosphere. Archiu Meteor., aeophya. u. Bioklim., Serie B, 6 , 452.
    • Elsesser, W. M. & Culbertson, M. F. 1960. Atmospheric Radiation Tables, Meteorological Monograph 4 , 23.
    • Feigel'son, E. M. 1964. Light and heat radiation in stratus clouds. (Translated from Russian.) US Dept. of Commerce, Clearinghouse for Federal Scientificand TechnicalInformation,TT 66-61014.
    • Orimminger, 0. 1948. Analyeia of the Temperature, Preawre and Density of the Atmoaphere Extending to Eztreme AltitwEes.T h e Rand Corporation, Santa Monica.
    • Herman,B. M. 1962. Infrared absorption,scattering, and total attenuation cross-sections for water spheres. Q . J. Royal Meteorol. Soo. 88, no. 376, 143-150.
    • Irvine, W. M. & Pollack, J.B. 1968. Infrared optical properties of water and ice spheres Intemat. J. of Solar Syatem 8, no. 2, 324-360.
    • Kraus, H. 1958. Untersuchungen uber den nlichtlichen Energietransport und Energiehaushalt in der bodennahen Luftschicht bei der Bildung von Strehlungsnebeln. Ber. Dtach. Wetterd., no. 48.
    • Linkes Meteorologischea Tmchenbuch, 11, 1953. Franz Baur, Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig, Germany.
    • London, J. 1950. US Air Force Cambridge Research Laboratory Progress Reports 131.01. 131.02, and 131.03.
    • McDonald, J. E. 1960. Absorption of atmospheric radiation by water films and water clouds. J. Meteor. 17, 232-238.
    • Moller, F., 1944: Grundagen eines Diagramms zur Berechnung langwelliger Strahlungsstrome. Metewologkche Zeitachrijt 6 1 , 37-45.
    • Rodhe, B. 1962. T h e effect of turbulence on fog formation. Tellua 14, 49-86.
    • Smithaonian Meteorologhl Tablea. prepared by Robert J. List, Washington, D.C., Smithsonian Institution, 1958.
    • Whittaker, E. T.& Watson, G. N. 1946. A Couree of Modern AnaZy&, Chapter 15. University Press; Cambridge, Macmillan, New York.
    • Wyatt, P. J., Stull, V. R. & Plass, G. N. 1962. Infrared absorption of water vapor. Infrared Transmission Studies Final Report, vol. II. Contract no. AF 04(695)-96,Geophysics Research Directorate, Air Force Cambridge Research Laboratories.
    • Yamamoto, G., Tanake, M. & Kamitani, K. 1966. Radiative transfer in water clouds in the 10- micron window region. J . Atmos. Sci. 23, no. 3, 306-3 13.
    • Zdunkowski, W. 1963. Untersuchungen iiber die langwellige Strahlung der Atmosphare. Ger. Bed. GeOphy8. 7 2 , 103-106.
    • Zdunkowski, W. & Strand, R. 1969. Light scattering constants for a water cloud. Pure and A p p l . cfeophy8. 19, 82-105.
    • Zdunkowski, W. & Nielsen, B. 1969. A preliminmy prediction analysis of radiation fog. Pure and Appl. aeophys. 19, 45-66. The phase function of the infrared wavelength is approximated with very high precision.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from