LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Strassmann, K. M.; Joos, F.; Fischer, G. (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects:
The impact of land use on the global carbon cycle and climate is assessed. The Bern carbon cycle-climate model was used with land use maps from HYDE3.0 for 1700 to 2000 A.D. and from post-SRES scenarios for this century. Cropland and pasture expansion each cause about half of the simulated net carbon emissions of 188 Gt C over the industrial period and 1.1 Gt C yr-1 in the 1990s, implying a residual terrestrial sink of 113 Gt C and of 1.8 Gt C yr-1, respectively. Direct CO2 emissions due to land conversion as simulated in book-keeping models dominate carbon fluxes due to land use in the past. They are, however, mitigated by 25% through the feedback of increased atmospheric CO2 stimulating uptake. CO2 stimulated sinks are largely lost when natural lands are converted. Past land use change has eliminated potential future carbon sinks equivalent to emissions of 80–150 Gt C over this century. They represent a commitment of past land use change, which accounts for 70% of the future land use flux in the scenarios considered. Pre-industrial land use emissions are estimated to 45 Gt C at most, implying a maximum change in Holocene atmospheric CO2 of 3 ppm. This is not compatible with the hypothesis that early anthropogenic CO2 emissions prevented a new glacial period.DOI: 10.1111/j.1600-0889.2008.00340.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Achard, F., Eva, H. D., Stibig, H. J., Mayaux, P., Gallego, J. and coauthors. 2002. Determination of deforestation rates of the world's humid tropical forests. Science 297, 999-1002.
    • Bala, G., Caldeira, K., Wickett, M., Phillips, T. J., Lobell, D. B. and coauthors. 2007. Combined climate and carbon-cycle effects of largescale deforestation. Proc. Natl. Acad. Sci. USA 104, 6550-6555, doi:10.1073/pnas.0608998104.
    • Bondeau, A., Smith, P. C., Zaehle, S., Schaphoff, S., Lucht, W. and co-authors. 2007. Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Global Change Biol. 13, 1-28, doi:10.1111/j.1365-2486.2006.01305.x.
    • Brovkin, V., Sitch, S., von Bloh, W., Claussen, M., Bauer, E. and coauthors. 2004. Role of land cover changes for atmospheric CO2 increase and climate change during the last 150 years. Global Change Biol. 10, 1253-1266.
    • Brovkin, V., Claussen, M., Driesschaert, E., Fichefet, T., Kicklighter, D. and co-authors. 2006. Biogeophysical effects of historical land cover changes simulated by six earth system models of intermediate complexity. Clim. Dyn. 26, 587-600, doi:10.1007/s00382-005-0092- 6.
    • Bruno, M. and Joos, F. 1997. Terrestrial carbon storage during the past 200 years: a Monte Carlo analysis of CO2 data from ice core and atmospheric measurements. Global Biogeochem. Cycles 11(1), 111- 124.
    • Cramer, W., Bondeau, A., Woodward, F. I., Prentice, I. C., Betts, R. A. and co-authors. 2001. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six global dynamic vegetation models. Global Change Biol. 7, 357- 373.
    • Cubasch, U. R., Voss, R., Hegerl, G. C., Waszkewitz, J. and Crowley, T. J. 1997. Simulation of the influence of solar radiation variations on the global climate with an ocean-atmosphere general circulation model. Clim. Dyn. 13, 757-767.
    • DeFries, R. S., Houghton, R. A., Hansen, M. C., Field, C. B., Skole, D. and co-authors. 2002. Carbon emissions from tropical deforestation and regrowth based on satellite observations for the 1980s and 1990s. Proc. Natl. Acad. Sci. USA 99, 14256-14261.
    • Denman, K. L., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P. and co-authors. 2007. Couplings between changes in the climate system and biogeochemistry. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Chapter 7 (ed. S. Solomon), Cambridge Univ. Press, New York.
    • Edmonds, J., Joos, F., Nakic´enovic´, N., Richels, R. G. and Sarmiento, J. L. 2004. Scenarios, targets, gaps, and costs. In: The Global Carbon Cycle: Integrating humans, climate, and the natural world (eds C. B. Field and M. R. Raupach), Island Press, Washington, SCOPE 62, chap. Scenarios, Targets, Gaps, and Costs.
    • Enting, I. G., Trudinger, C. M. and Francey, R. J. 1995. A synthesis inversion of the concentration and δ13C of atmospheric CO2. Tellus 47B, 35-52.
    • Etheridge, D. M., Steele, L. P., Langenfelds, R. L., Francey, R. J., Barnola, J. M. and co-authors. 1996. Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J. Geophys. Res. 101, 4115-4128.
    • Farquhar, G. D., von Caemmerer, S. and Berry, J. A. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78-90.
    • Feddema, J. J., Oleson, K. W., Bonan, G. B., Mearns, L. O., Buja, L. E. and co-authors. 2005. The importance of land-cover change in simulating future climates. Science 310, 1674-1678.
    • Field, C. B. and Raupach, M. R. (eds.), 2004. The Global Carbon Cycle: Integrating Humans, Climate, and the Natural World. SCOPE 62. Island Press, Washington.
    • Foley, J. A. 1995. An equilibrium model of the terrestrial carbon budget. Tellus 47B, 310-319.
    • Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R. A. and co-authors. 2007. Changes in atmospheric constituents and in radiative forcing. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Chapter 2 (ed. S. Solomon), Cambridge Univ. Press, New York.
    • Fuglestvedt, J. and Berntsen, T. 1999. A simple model for scenario studies of changes in global climate. Working Paper 1999:2, Center for International Climate and Environmental Research, Oslo. ISSN:0804- 452x.
    • Gerber, S., Joos, F., Bru¨gger, P., Stocker, T. F., Mann, M. E. and coauthors. 2003. Constraining temperature variations over the last millennium by comparing simulated and observed atmospheric CO2. Clim. Dyn. 20, 281-299, doi:10.1007/s00382-002-0270-8.
    • Gerber, S., Joos, F. and Prentice, I. C. 2004. Sensitvity of a dynamic global vegetation model to climate and atmospheric CO2. Global Change Biol. 10, 1223-1239.
    • Gitz, V. and Ciais, P. 2003. Amplification effect of changes in land use and concentration of atmospheric CO2. Comptes Rendus Geosci. 335, 1179-1198.
    • Gitz, V. and Ciais, P. 2004. Future expansion of agriculture and pasture acts to amplify atmospheric CO2 levels in response to fossil-fuel and land-use change emissions. Clim. Change 67, 161-184.
    • Goodale, C. L., Apps, M. J., Birdsey, R. A., Field, C. B., Heath, L. S. and co-authors. 2002. Forest carbon sinks in the northern hemisphere. Ecol. Appl. 12, 891-899.
    • Haxeltine, A. and Prentice, I. C. 1996. BIOME 3: an equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability and competition among plant functional types. Global Biogeochem. Cycles 10, 693-703.
    • Houghton, R. A. 1999. The annual net flux of carbon to the atmosphere from changes in land use 1850-1990. Tellus 51B, 298-313.
    • Houghton, R. A. 2003. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850-2000. Tellus 55B, 378-390.
    • Houghton, R. A., Hobbie, J. E., Melillo, J. M., Moore, B., Peterson, B. J. and co-authors. 1983. Changes in the carbon content of terrestrial biota and soils between 1860 and 1980-a net release of CO2 to the atmosphere. Ecol. Monogr. 53, 235-262.
    • Houghton, R. A., Joos, F. and Asner, G. P. 2004. The effects of land use and managment on the global carbon cycle. In: Land Change Science: Observing, Monitoring, and Understanding Trajectories of Change on the Earth's Surface (ed. G. Gutman), Springer, Remote Sensing and Digital Image Processing, Vol. 6, E-book., ISBN: 1-4020-2562-9.
    • Houghton, R. and Goodale, C. 2004. Effects of land-use change on the carbon balance of terrestrial ecosystems. In: Ecosystems and Land Use Change (eds R. DeFries, G. Asner and R. Houghton), American Geophysical Union, Washington, DC.
    • Houghton, R. A. 2005. Aboveground forest biomass and the global carbon balance. Global Change Biol. 11, 945-958.
    • Hurtt, G. C., Pacala, S. W., Moorcroft, P. R., Caspersen, J., Shevliakova, E. and co-authors. 2002. Projecting the future of the U. S. carbon sink. Proc. Natl. Acad. Sci. USA 99, 1389-1394, doi:10.1073/ pnas.012249999.
    • Joos, F., Bruno, M., Fink, R., Stocker, T. F., Siegenthaler, U. and coauthors. 1996. An efficient and accurate representation of complex oceanic and biospheric models of anthropogenic carbon uptake. Tellus 48B, 397-417.
    • Joos, F., Meyer, R., Bruno, M. and Leuenberger, M. 1999. The variability in the carbon sinks as reconstructed for the last 1000 years. Geophys. Res. Lett. 26, 1437-1441.
    • Joos, F., Prentice, I. C., Sitch, S., Meyer, R., Hooss, G. and co-authors. 2001. Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios. Global Biogeochem. Cycles 15, 891-907.
    • Joos, F., Gerber, S., Prentice, I. C., Otto-Bliesner, B. L. and Valdes, P. J. 2004. Transient simulations of Holocene atmospheric carbon dioxide and terrestrial carbon since the Last Glacial Maximum. Global Biogeochem. Cycles 18, 1-18. doi:10.
    • Keeling, C. D. and Whorf, T. P. 2003. Atmospheric CO2 records from sites in the SIO air sampling network In: Trends: A Compendium of Data on Global Change, Carbon Dioxide Information Analysis Center,Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., USA.
    • Klein Goldewijk, K. 2001. Estimating global land use change over the past 300 years: the HYDE database. Global Biogeochem. Cycles 15, 417-433.
    • Klein Goldewijk, K. 2005. Three centuries of global population growth: a spatial referenced population (density) database for 1700-2000. Populat. Environ. 26, 343-367.
    • Klein Goldewijk, K. and van Drecht, G. 2006. HYDE3: current and historical population and land cover. In: Integrated modelling of global environmental change. An overview of IMAGE 2.4. (eds A. F. Bouwman, T. Kram and K. Klein Goldewijk), Netherlands Environmental Assessment Agency (MNP), Bilthoven, The Netherlands.
    • Ko¨hler, P., Joos, F., Gerber, S. and Knutti, R. 2005. Simulated changes in vegetation distribution, land carbon storage, and atmospheric CO2 in response to a collapse of the North Atlantic thermohaline circulation. Clim. Dyn. 25, 689-708.
    • Leemans, R. and Cramer, W. P. 1991. The IIASA climate database for land areas on a grid with 0.5◦ resolution. research report RR-91-18. Tech. rep., International Institute for Applied System Analysis.
    • Leemans, R., Eickhout, B., Strengers, B., Bouwman, L. and Schaeffer, M. 2002. The consequences for the terrestrial carbon cycle of uncertainties in land use, climate and vegetation responses in the IPCC SRES scenarios. Sci. China 45, 126-141.
    • Lloyd, J. and Taylor, J. A. 1994. On the temperature dependence of soil respiration. Funct. Ecol. 8, 315-323.
    • Manning, A. C. and Keeling, R. F. 2006. Global oceanic and land biotic carbon sinks from the Scripps atmospheric oxygen flask sampling network. Tellus 58B, 95-116.
    • Marland, G., Boden, T. A. and Andres, R. J. 2006. Global, regional, and national CO2 emissions. In: Trends: A Compendium of Data on Global Change, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., USA.
    • McGuire, A. D., Sitch, S., Clein, J. S., Dargaville, R., Esser, G. and co-authors. 2001. Carbon balance of the terrestrial biosphere in the twentieth century: analyses of CO2, climate and land use effects with four process-based ecosystem models. Global Biogeochem. Cycles 15, 183-206.
    • Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, A. T. and co-authors. 2007. Global climate projections. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Chapter 10 (ed. S. Solomon), Cambridge Univ. Press, New York.
    • Messner, S. and Schrattenholzer, L. 2000. MESSAGE-MACRO: linking an energy supply model with a macroeconomic module and solving it iteratively. Energy Int. J. 25, 267-282.
    • Meure, C. M., Etheridge, D., Trudinger, C., Steele, P., Langenfelds, R. and co-authors. 2006. Law dome CO2, CH4 and N2O ice core records extended to 2000 years bp. Geophys. Res. Lett. 33.
    • Mikolajewicz, U., Gro¨ger, M., Maier-Reimer, R., Schurgers, G., Vizca´ıno, M. and co-authors. 2007. Long-term effects of anthropogenic CO2 emissions simulated with a complex earth system model. Clim. Dyn. 28, 599-631, doi:10.1007/s00382-006-0204-y.
    • Monteith, J. L. 1995. Accommodation between transpiring vegetation and the convective boundary-layer. J. Hydrol. 166, 251-263.
    • Mueller, C. and Lucht, W. 2007. Robustness of terrestrial carbon and water cycle simulations against variations in spatial resolution. J. Geophys. Res. 112D, 1-7.
    • Nabuurs, G. J., Schelhaas, M. J., Mohren, G. M.J. and Field, C. B. 2003. Temporal evolution of the european forest sector carbon sink from 1950 to 1999. Global Change Biol. 9, 152-160.
    • Nakic´enovic´, N. and Swart, R. (eds.), 2000. Special Report on Emission Scenarios. Intergovernmental Panel on Climate Change, Cambridge University Press, New York.
    • Pacala, S. W., Hurtt, G. C., Baker, D., Peylin, P., Houghton, R. A. and co-authors. 2001. Consistent land- and atmosphere-based U.S. carbon sink estimates. Science 292, 2316-2320.
    • Plattner, G. K., Joos, F. and Stocker, T. F. 2002. Revision of the global carbon budget due to changing air-sea oxygen fluxes. Global Biogeochem. Cycles 16, 1096, doi:10.1029/2001GB001746.
    • Prather, M., Ehhalt, D., Dentener, F., Derwent, R., Dlugokencky, E. and co-authors. 2001. Atmospheric chemistry and greenhouse gases. In: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (eds J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell and C. A. Johnson), Cambridge Univ. Press, New York, 239-287.
    • Prentice, I. C., Farquhar, G. D., Fasham, M. J., Goulden, M. I., Heimann, M. and co-authors. 2001. The carbon cycle and atmospheric CO2. In: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (eds J. T. Houghton, Y. Ding, D. Griggs, M. Noguer, P. van der Linden, X. Dai, K. Maskell and C. A. Johnson), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 183-237.
    • Ramankutty, N. and Foley, J. A. 1999. Estimating historical changes in global land cover: croplands from 1700 to 1992. Global Biogeochem. Cycles 13, 997-1027.
    • Riahi, K., Grubler, A. and Nakic´enovic´, N. 2007. Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol. Forecast. Soc. Change 74, 887-935, doi:10.1016/j. techfore.2006.05.026.
    • Roesch, A. 2006. Evaluation of surface albedo and snow cover in AR4 coupled climate models. J. Geophys. Res. 111D, 1-18.
    • Rokityanskiy, D., Benitez, P. C., Kraxner, F., McCallum, I., Obersteiner, M. and co-authors. 2006. Geographically explicit global modeling of land-use change, carbon sequestration, and biomass supply. Technol. Forecast. Soc. Change 74, 1057-1082.
    • Ruddiman, W. F. 2005. Cold climate during the closest stage 11 analog to recent millennia. Quarter. Sci. Rev. 24, 1111-1121.
    • Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K. and coauthors. 2004a. The oceanic sink for anthropogenic CO2. Science 305, 367-371.
    • Sabine, C. L., Heimann, M., Artaxo, P., Bakker, D. C. E., Chen, C. T. A. and co-authors. 2004b. Current status and past trends of the global carbon cycle. In: The Global Carbon Cycle: Integrating Humans, Climate and the Natural World (eds C. B. Field and M. R. Raupach), Island Press, Washington, DC, 17-44.
    • Schimel, D., Alves, D., Enting, I. G., Heimann, M., Joos, F. and coauthors. 1996. CO2 and the carbon cycle. In: IPCC Second Scientific Assessment of Climate Change (ed. J. T. Houghton), Cambridge Univ. Press, New York, 76-86.
    • Seneviratne, S. I., Lanthi, D., Litschi, M. and Schaer, C. 2006. Landatmosphere coupling and climate change in europe. Nature 443, 205- 209.
    • Siegenthaler, U. and Joos, F. 1992. Use of a simple model for studying oceanic tracer distributions and the global carbon cycle. Tellus 44B, 186-207.
    • Siegenthaler, U. and Oeschger, H. 1987. Biospheric CO2 emissions during the past 200 years reconstructed by deconvolution of ice core data. Tellus Ser. B, 39, 140-154.
    • Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A. and coauthors. 2003. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biol. 9, 161-185.
    • Sitch, S., Brovkin, V., von Bloh, W., van Vuuren, D., Eickhout, B. and Ganopolski, A. 2005. Impacts of future land cover changes on atmospheric CO2 and climate. Global Biogeochem. Cycles 19.
    • Strengers, B., Leemans, R., Eickhout, B., de Vries, B. and Bouwman, L. 2004. The land-use projections and resulting emissions in the IPCC SRES scenarios scenarios as simulated by the IMAGE 2.2 model. GeoJournal 61, 381-393, doi:10.1007/s10708-004-5054-8.
    • Tubiello, F. N. and Fischer, G. 2006. Reducing climate change impacts on agriculture: global and regional effects of mitigation, 2000-2080. Technol. Forecast. Soc. Change 74, 1030-1056, doi:10.1016/j. techfore.2006.05.027.
    • Vesala, T., Suni, T., Rannik, U., Keronen, P., Markkanen, T. and coauthors. 2005. Effect of thinning on surface fluxes in a boreal forest. Global Biogeochem. Cycles 19.
    • Zobler, L. 1986. A world soil file for global climate modelling. Technical Memorandum 87802, NASA.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    66
    66%
  • No similar publications.

Share - Bookmark

Cite this article

Collected from