Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Tisler, Priit; Vihma, Timo; Müller, Gerd; Brümmer, Burghard (2008)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article

Classified by OpenAIRE into

arxiv: Physics::Atmospheric and Oceanic Physics
The evolution of the atmospheric boundary layer (ABL) during warm-air advection over sea ice in the Fram Strait is investigated. A hierarchy of numerical models is applied and the results are validated against aircraft observations. Operational HIRLAM (HIgh Resolution Limited Area Model) runs suffered from inaccurate information on the location of the sea ice edge. When this was improved, together with improving the horizontal resolution, the HIRLAM results became much better. Two-dimensional model runs with inflow boundary conditions prescribed according to the aircraft observations demonstrated that the contribution of thin ice (re-frozen leads) is important. The modelled turbulent fluxes of momentum, sensible heat and latent heat showed a large vertical divergence from the surface to the height of the aircraft observations. Above a 4-km-wide open lead, the modelled heat fluxes at the observation height of 24 m agreed reasonably well with the observations but were on average only 6% (sensible heat) and 13% (latent heat) of the modelled surface values. Model experiments showed that in this case relatively high values for the roughness length z0 over sea ice yielded better agreement with the observed wind speed than values commonly used in numerical models.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Alestalo, M. and Savija¨rvi, H. 1985. Mesoscale circulations in a Hydrostatic Model: Coastal convergence and orographic lifting. Tellus. 37A, 156-162.
    • Andreas, E. L. 1987. A theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice. Bound. Lay. Met. 38, 159- 184.
    • Andreas, E. L., Tucker III, W. B. and Ackley, S. F. 1984. Atmospheric boundary-layer modification, drag coefficient, and surface heat flux in the Antarctic marginal ice zone. J. Geophys. Res. 89, 649-661.
    • Bennett, T. J. Jr. and Hunkins, K. 1986. Atmospheric boundary layer modification in the marginal ice zone. J. Geophys. Res. 91, 13033- 13044.
    • Bradley, R. S., Keimig, F. T. and Diaz, H. F. 1992. Climatology of surfacebased inversions in the North American Arctic. J. Geophys. Res. 97, 15699-15712.
    • Bru¨mmer, B. 1996. Boundary-layer modification in wintertime cold-air outbreaks from the arctic sea ice. Bound. Lay. Met. 80, 109-125.
    • Bru¨mmer, B. and Thiemann, S. 1999. Field Campaign ACSYS 1998: Aircraft Measurements in Arctic On-Ice Air Flows. Ber. aus dem Zentrum f. Meeres- u. Klimaforschung, Reihe A 32, 35 pp.
    • Bru¨mmer, B. and Thiemann, S. 2002. Arctic wintertime on-ice air flow. Bound. Lay. Met. 104, 53-72.
    • Bru¨mmer, B., Busack, B. and Hoeber, H. 1994. Boundary-layer observations over water and arctic sea ice during on-ice air flow. Bound. Lay. Met. 68, 75-108.
    • Bru¨mmer, B., Schro¨der, D., Launiainen, J., Vihma, T., Smedman, A.- S., and co-authors 2002. Temporal and spatial variability of surface fluxes over the ice edge zone in the northern Baltic Sea. J. Geophys. Res. 107, doi:10.1029/2001JC000884.
    • Cats, G. 2005. Reference system status December 2005. HIRLAM Newsl 49, 105-106, HIRLAM-6 Project, c/o Per Unde´n, SMHI, S-601 76 Norrko¨ping, SWEDEN.
    • Cheng, B. and Vihma, T. 2002. Modelling of sea ice thermodynamics during warm-air advection. J. Glaciol. 48, 425-438.
    • Cuxart, J., Bougeault, P. and Redelsberger, J. L. 2000. A turbulence scheme allowing for mesoscale and large-eddy simulations. Quart. J. Roy. Meteorol. Soc. 126, 1-30.
    • De Cosmo, J., Katsaros, K. B., Smith, S. D., Anderson, R. J., Oost, W. A. and co-authors. 1996. Air-sea exchange of water vapor and sensible heat: The humidity exchange over the sea (HEXOS) results. J. Geophys. Res. 101, 12001-12016.
    • Drusch, M. 2006. Sea ice concentration analyses for the Baltic Sea and their impact on numerical weather prediction. J. Appl. Meteorol. Climatol. 45, 982-994.
    • Dyer, A.-J. 1974. A review of flux-profile relationships. Bound. Lay. Met. 7, 363-372.
    • Esau, I. N. 2007. Amplification of turbulent exchange over wide Arctic leads: Large-eddy simulation study. J. Geophys. Res. 112, D08109, doi: 10.1029/2006JD007225.
    • Fairall, C. W. and Markson, R. 1987. Mesoscale variations in surface stress, heat fluxes, and drag coefficient in the marginal ice zone during the 1983 marginal ice zone experiment. J. Geophys. Res. 92, 6921- 6932.
    • Garbrecht, T., Lu¨pkes, C., Hartmann, J. and Wolff, M. 2002. Atmospheric drag coefficients over sea ice - validation of a parameterization concept. Tellus 54A, 205-219.
    • Glendening, J. W. 1994. Dependence of boundary layer structure near an ice-edge coastal front upon geostrophic wind direction. J. Geophys. Res. 99, 5569-5581.
    • Guest, P. S., Glendening, J. W. and Davidson, K. L. 1995. An observational and numerical study of wind stress variations within marginal ice zones. J. Geophys. Res. 100, 10887-10904.
    • Homleid, M., Albertsen, J., Eastwood, S. and Vignes, O. 2005. Daily updates of sea surface temperature and sea ice concentration fields based on O&SI SAF data in HIRLAM at the Norwegian Meteorological Institute. HIRLAM Newsletter 48, 82-91, HIRLAM-6 Project, Available from SMHI, S-60176 Norrko¨ping, Sweden.
    • Inoue, J., Kawashima, M., Fujiyoshi, Y. and Wakatsuchi, M. 2005. Aircraft observations of air-mass modification over the Sea of Okhotsk during sea-ice growth. Bound. Lay. Met. 117, 111-129.
    • Kaleschke, L., Lu¨pkes, C., Vihma, T., Haarpainter, J., Bochert, A. and co-authors. 2001. SSM/I sea ice remote sensing for mesoscale oceanatmosphere interaction analysis. Canadian J. Remote Sensing 27, 526- 536.
    • Kantha, L. H. and Mellor, G. L. 1989. A two-dimensional coupled oceanice model to the Bering sea marginal ice zone. J. Geophys. Res. 94, 10921-10935.
    • Ka¨lle´n, E. 1996. HIRLAM documentation manual. System 2.5. HIRLAM Technical Report, Available from SMHI, S-60176 Norrko¨ping, Sweden, 178 p. + 55 p. appendix.
    • Kwok, R., Cunningham, G. F., Zwally, H. J. and Yi, D. 2006. ICESat over Arctic sea ice: Interpretation of altimetric and reflectivity profiles. J. Geophys. Res. 111, doi: 10.1029/2005JC003175.
    • Lenderink, G. and De Rooy, W. 2000. A robust mixing length formulation for a TKE-l turbulence scheme. HIRLAM Newsl. 36, 25-29, HIRLAM5 Project, c/o Per Unde´n, SMHI, S-601 76 Norrko¨ping, SWEDEN.
    • Makshtas, A. P. 1991. The Heat Budget of Arctic Ice in the Winter. Int. Galciol. Soc., Cambridge, England, 77 pp.
    • Maslanik, J. A., Lynch, A. H., Serreze, M. C. and Wu, W. 2000. A case study of regional climate anomalies in the Arctic: Performance requirements for a coupled model. J. Climate 13, 383-401.
    • Morcrette, J.-J. 1991. Radiation and cloud radiative properties in the ECMWF forecasting system. J. Geophys. Res. 96, 9121-9132.
    • Niemela¨, S., Ra¨isa¨nen, P. and Savija¨rvi, H. 2001a. Comparison of surface radiative flux parameterizations. Part I: Longwave radiation. Atmosph. Res. 58, 1-18.
    • Niemela¨, S., Ra¨isa¨nen, P. and Savija¨rvi, H. 2001b. Comparison of surface radiative flux parameterizations. Part II: Shortwave radiation. Atmosph. Res. 58, 141-154.
    • Olsson, P. Q. and Harrington, J. Y. 2000. Dynamics and energetics of the cloudy boundary layer in simulations of off-ice flow in the marginal ice zone. J. Geophys. Res. 105, 11889-11899.
    • Overland, J. E., Spillane, M. C., Percival, D. B., Wang, M. and Mofjeld, H. O. 2004. Seasonal and regional variation of pan-arctic surface air temperature over the instrumental record. J. Clim. 17, 3263-3282.
    • Pirazzini, R., Vihma, T., Launiainen, J. and Tisler, P. 2002. Validation of HIRLAM boundary-layer structures over the Baltic Sea. Boreal Env. Res. 7, 211-218.
    • Rodr´ıguez, E., Navascue´s, B., Ayuso, J. and Ja¨rvenoja, S. 2003. Analysis of surface variables and parameterization of surface processes in HIRLAM. Part I: Approach and verification by parallel runs. HIRLAM Tech. Rep., 58, 41p. + 11p.appendix.
    • Sass, B. H., Rontu, L. and Ra¨isa¨nen, P. 1994. HIRLAM-2 radiation scheme: Documentation and tests. Tech. Rep., 16, HIRLAM-3 Project, Available from SMHI, S-60176 Norrk o¨ping, Sweden.
    • Savija¨rvi, H. 1990. Fast radiation parameterization schemes for mesoscale and short-range forecast models. J. Appl. Meteorol. 29, 437-447.
    • Savija¨rvi, H. and Amnell, T. 2001. High resolution flight observations and numerical simulations: Horizontal variability in the wintertime boreal boundary layer. Theor. Appl. Climatol. 70, 245-252.
    • Savija¨rvi, H., Arola, A. and Ra¨isa¨nen, P. 1997. Shortwave Optical properties of precipitating waterclouds. Quart. J. Roy. Meteorol. Soc. 123, 883-899.
    • Savija¨rvi, H. and Kauhanen, J. 2001. High resolution numerical simulations of temporal and vertical variability in the stable wintertime boreal boundary layer: a case study. Theor. Appl. Climatol. 70, 97-103.
    • Savija¨rvi, H. and Matthews, S. 2004. Flow over small heat islands: A numerical sensitivity study. J. Atmos. Sci. 61, 859-868.
    • Savija¨rvi, H. and Ra¨isa¨nen, P. 1998. Longwave optical properties of water clouds and rain. Tellus 50A, 1-11.
    • Sturm, M., Perovich, D. K. and Holmgren, J. 2002. Thermal conductivity and heat transfer through the snow on the ice of the Beaufort Sea. J. Geophys. Res. 107, doi: 10.1029/2000JC000409.
    • Taylor, P. K. 2002. Air-sea interaction / momentum heat and vapour fluxes. In: Encyclopedia of Atmospheric Sciences (Eds Holton, J. P., Curry, J. A. and Pyle, J.). Academic Press, London, 93-102.
    • Thorpe, A. J. and Guymer, T. H. 1977. The nocturnal jet. Quart. J. Roy. Meteorol. Soc. 103, 633-653.
    • Tijm, S. 2004. Tuning CBR. HIRLAM Newsletter 46, 18-23, HIRLAM-6 Project, c/o Per Unde´n, SMHI, S-601 76 Norrk o¨ping, SWEDEN.
    • Unde´n, P., Rontu, L., Ja¨rvinen, H., Lynch, P., Calvo, J. and co-authors. 2002. HIRLAM-5 Scientific Documentation. HIRLAM-5 Project. Norrk o¨ping, Sweden, 144 p.
    • Van Mejgaard, E., Andrae, U. and Rockel, B. 2001. Comparison of model predicted cloud parameters and surface radiation fluxes with observations on the 100 km scale. Meteor. Atmos. Phys. 77, 109-130.
    • Valkonen, T., Vihma, T. and Doble, M. 2008. Mesoscale modeling of the atmosphere over Antarctic sea ice: A late-autumn case study. Mon. Wea. Rev., in press.
    • Vihma, T. and Br u¨mmer, B. 2002. Observations and modelling of the on-ice and off-ice air flow over the northern Baltic Sea. Bound. Lay. Met. 103, 1-27.
    • Vihma, T., Hartmann, J. and L u¨pkes, C. 2003. A case study of an on-ice air flow over the Arctic marginal sea ice zone. Bound. Lay. Met. 107, 189-217.
    • Vihma, T., L u¨pkes, C., Hartmann, J. and Savija¨rvi, H. 2005. Observations and modelling of cold-air advection over Arctic Sea Ice. Bound. Lay. Met. 117, 275-300.
    • Vihma, T. and Pirazzini, R. 2005. On the factors controlling the snow surface and 2-m air temperatures over the Arctic Sea Ice in winter. Bound. Lay. Met. 117, 73-90.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article

Collected from