LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Lubrano, A. M.; Masiello, G.; Matricardi, M.; Serio, C,; Cuomo, V. (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects:
The paper describes and demonstrates a methodology for the physical retrieval of nitrous oxide that uses the spectral radiance measured by the next generation of high-resolution satellite-borne infrared sensors. The performance of the retrieval scheme has been assessed on the basis of numerical exercises. Examples of retrievals based on Interferometric Monitoring of Greenhouse Gases (IMG) spectra measured over the sea surface are given to demonstrate the ability of the scheme to obtain accurate N2O concentration values.DOI: 10.1111/j.1600-0889.2004.00100.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Amato, U., De Canditiis, D. and Serio, C. 1998. Effect of apodization on the retrieval of geophysical parameters from Fourier-transform spectrometers. Appl. Opt. 37, 6537-6543.
    • Amato, U., Masiello, G., Serio, C. and Viggiano, M. 2002. The σ - IASI code for the calculation of infrared atmospheric radiance and its derivatives. Environ. Model. Software 17/7, 651-667.
    • Anderson, G. P., Clough, S. A., Kneizys, F. X., Chetwind, J. H. and Shettle, E. P. 1986. AFGL Atmospheric Concentration Profiles (0-120 km). AFGL-TR-86-0110, AFGL (OPI), Hanscom Air Force Base, MA 01736, USA.
    • Carfora, M. F., Esposito, F. and Serio, C. 1998. Numerical methods for retrieving aerosol size distribution from optical measurements of solar radiation. J. Aerosol Sci. 29, 1225-1236.
    • Chedin, A., Scott, N. A., Wahiche, C. and Moulnier, P. 1985. The improved initialization inversion method: a high resolution method for temperature retrievals from satellites of the TIROS-N series. J. Clim. Appl. Meteorol. 24, 128-143.
    • Clough, S. A., Kneizys, F. X. and Davies, R. W. 1989. Line shape and the water vapor continuum. Atmos. Res. 23, 229-241.
    • Clough, S. A., Iacono, M. J. and Moncet, J.-L. 1992. Line-by-line calculation of atmospheric fluxes and cooling rates, 1, Application to water vapor. J. Geophys. Res. 97, 15761-15785.
    • Hansen, P. C. 1992. Analysis of discrete ill-posed problems by L-curve. SIAM Rev. 39, 561-580.
    • Kendall, M. and Stuart, A. 1979. The Advanced Theory of Statistics. 2nd edn, Vol. 2, C. Griffin, London.
    • Kobayashi, H., Shimota, A., Yoshigahara, C., Yoshida, I., Uehara, Y. and Kondo, K. 1999. Satellite-borne high-resolution FTIR for lower atmosphere sounding and its evaluation. IEEE Trans. Geosci. Remote Sensing 37, 1496-1507.
    • Liou, K. N. 1992. Radiation and Cloud Processes in the Atmosphere. Oxford University Press, Oxford, UK.
    • Lubrano, A. M., Serio, C., Clough, S. A. and Kobayashi, H. 2000. Simultaneous inversion for temperature and water vapor from IMG radiances. Geophys. Res. Lett. 27, 2533-2536.
    • Masiello, G., Serio, C. and Shimoda, H. 2003, Qualifying IMG Tropical Spectra for Clear Sky. J. Quant. Spectrosc. Radiat. Transfer 77/2, 131-148.
    • Masuda, K., Takashima, T. and Takayama, Y. 1988. Emissivity of pure and sea waters for the model sea surface in the infrared window regions. Remote Sens. Environ. 24, 313-329.
    • Rothman, L. S., Rinsland, C. P., Goldman, A., Massie, S. T., Edwards, D. P., Flaud, J.-M., Perrin, A., Camy-Peyret, C., Dana, V., Mandin, J.-Y., Schroeder, J., McCann, A., Gamache, R. R., Wattson, R. B., Yoshino, K., Chance, K. V., Jucks, K. W., Brown, L. R., Nemtchinov, V. and Varanasi, P. 1998. The HITRAN molecular spectroscopic database and HAWKS (Hitran Atmospheric Workstation): 1996 edition. J. Quant. Spectrosc. Radiat. Transfer 60, 665-710.
    • Prinn, R. G., Weiss, R. F., Fraser, P. J., Simmonds, P. G., Cunnold, D. M., Alyea, F. N., O'Doherty, S., Salameh, P., Miller, B. R., Huang, J., Wang, R. H. J., Hartley, D. E., Harth, C., Steele, L. P., Surrock, G., Midgley, P. M. and McCulloch, A. 2000. A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE. J. Geophys. Res. 105(D14), 17751-17792.
    • Salisbury, J. W. and D'Aria, D. M. 1992. Emissivity of terrestrial materials in the 8-14 µ m atmospheric window. Remote Sens. Environ. 42, 83-106.
    • Tarantola, A. 1987. Inverse Problem Theory. Elsevier Science, London.
    • World Meteorological Organization (WMO) 2001. WMO Global Atmosphere Watch World Data Centre for Greenhouse Gases. CD-ROM no. 7. Published by the Japan Meteorological Agency in cooperation with the WMO, available from Japan Meteorological Agency (e-mail: ).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from