Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Yanan Yue; Xinwei Wang (2012)
Publisher: Taylor & Francis Group
Journal: Nano Reviews
Languages: English
Types: Article
Subjects: feature size, Review Article, nanoscale, Raman spectroscopy resistance thermometry, TP1-1185, scanning thermal microscopy, nanoscale; scanning thermal microscopy; feature size; near-field; Raman spectroscopy, resistance thermometry, near-field, Chemical technology
Nanoscale novel devices have raised the demand for nanoscale thermal characterization that is critical for evaluating the device performance and durability. Achieving nanoscale spatial resolution and high accuracy in temperature measurement is very challenging due to the limitation of measurement pathways. In this review, we discuss four methodologies currently developed in nanoscale surface imaging and temperature measurement. To overcome the restriction of the conventional methods, the scanning thermal microscopy technique is widely used. From the perspective of measuring target, the optical feature size method can be applied by using either Raman or fluorescence thermometry. The near-field optical method that measures nanoscale temperature by focusing the optical field to a nano-sized region provides a non-contact and nondestructive way for nanoscale thermal probing. Although the resistance thermometry based on nano-sized thermal sensors is possible for nanoscale thermal probing, significant effort is still needed to reduce the size of the current sensors by using advanced fabrication techniques. At the same time, the development of nanoscale imaging techniques, such as fluorescence imaging, provides a great potential solution to resolve the nanoscale thermal probing problem.Keywords: nanoscale; scanning thermal microscopy; feature size; near-field; Raman spectroscopy; near-field; resistance thermometry(Published: 12 March 2012)Citation: Nano Reviews 2012, 3: 11586 - DOI: 10.3402/nano.v3i0.11586
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Cahill D, Ford W, Goodson K, Mahan G, Majumdar A, Maris H, et al. Nanoscale thermal transport. J Appl Phys 2003; 93: 793 818.
    • 2. Ko¨ lzer J, Oesterschulze E, Deboy G. Thermal imaging and measurement techniques for electronic materials and devices. Microelectron Eng 1996; 31: 251 70.
    • 3. Cahill DG, Goodson K, Majumdar A. Thermometry and thermal transport in micro/nanoscale solid-state devices and structures. J Heat Trans 2002; 124: 223 41.
    • 4. Altet J, Claeys W, Dilhaire S, Rubio A. Dynamic surface temperature measurements in ICs. P IEEE 2006; 94: 1519 33.
    • 5. Christofferson J, Maize K, Ezzahri Y, Shabani J, Wang X, Shakouri A. Microscale and nanoscale thermal characterization techniques. J Electron Packaging 2008; 130: 041101 6.
    • 6. Aigouy L, Tessier G, Mortier M, Charlot B. Scanning thermal imaging of microelectronic circuits with a fluorescent nanoprobe. Appl Phys Lett 2005; 87: 184105 3.
    • 7. Bischof J. Micro and nanoscale phenomenon in bioheat transfer. Heat Mass Transfer 2006; 42: 955 66.
    • 8. Korte F, Nolte S, Chichkov BN, Bauer T, Kamlage G, Wagner T, et al. Far-field and near-field material processing with. femtosecond laser pulses. Appl Phys A 1999; 69: S7 S11.
    • 9. Yue Y, Chen X, Wang X. Noncontact sub-10 nm temperature measurement in near-field laser heating. ACS Nano 2011; 5: 4466 75.
    • 10. Malshe AP, Rajurkar KP, Virwani KR, Taylor CR, Bourell DL, Levy G, et al. Tip-based nanomanufacturing by electrical, chemical, mechanical and thermal processes. CIRP Ann Manuf Tech 2010; 59: 628 51.
    • 11. Binnig G, Rohrer H, Gerber C, Weibel E. Surface studies by scanning tunneling microscopy. Phys Rev Lett 1982; 49: 57 61.
    • 12. Williams C, Wickramasinghe H. Scanning thermal profiler. Appl Phys Lett 1986; 49: 1587 9.
    • 13. Majumdar A. Scanning thermal microscopy. Annu Rev Mater Sci 1999; 29: 505 85.
    • 14. Majumdar A, Carrejo J, Lai J. Thermal imaging using the atomic force microscope. Appl Phys Lett 1993; 62: 2501 3.
    • 15. Kittel A, Mu¨ ller-Hirsch W, Parisi J, Biehs S-A, Reddig D, Holthaus M. Near-field heat transfer in a scanning thermal microscope. Phys Rev Lett 2005; 95: 224301 4.
    • 16. Chapuis P-O, Greffet J-J, Joulain K, Volz S. Heat transfer between a nano-tip and a surface. Nanotech 2006; 17: 2978 81.
    • 17. Mu¨ ller-Hirsch W. Heat transfer in ultrahigh vacuum scanning thermal microscopy. J Vac Sci Technol A 1999; 17: 1205 10.
    • 18. Shi L, Majumdar A. Thermal transport mechanisms at nanoscale point contacts. Journal of Heat Transfer 2002; 124: 329 37.
    • 19. Park K, Cross GLW, Zhang ZM, King WP. Experimental investigation on the heat transfer between a heated microcantilever and a substrate. J Heat Trans 2008; 130: 102401 9.
    • 20. Luo K, Shi Z, Varesi J, Majumdar A. Sensor nanofabrication, performance, and conduction mechanisms in scanning thermal microscopy. J Vac Sci Technol B 1997; 15: 349 60.
    • 21. Shi L, Kwon O, Miner AC, Majumdar A. Design and batch fabrication of probes for sub-100 nm scanning thermal microscopy. J Microelectromech S 2001; 10: 370 8.
    • 22. Shi L, Majumdar A. Recent development in micro and nanoscale thermometry. Microscale Therm Eng 2001; 5: 251 65.
    • 23. Pylkki RJ, Moyer PJ, West PE. Scanning near-field optical microscopy and scanning thermal microscopy. Jpn J Appl Phys 1994; 33: 3785 90.
    • 24. Nonnenmacher M, Wickramasinghe H. Scanning probe microscopy of thermal conductivity and subsurface properties. Appl Phys Lett 1992; 61: 168 70.
    • 25. Nakabeppu O, Chandrachood M, Wu Y, Lai J, Majumdar A. Scanning thermal imaging microscopy using composite cantilever probes. Appl Phys Lett 1995; 66: 694 6.
    • 26. Oesterschulze E, Stopka M, Ackermann L, Scholz W, Werner S. Thermal imaging of thin films by scanning thermal microscope. J Vac Sci Technol B 1996; 14: 832 7.
    • 27. Hammiche A. Scanning thermal microscopy: Subsurface imaging, thermal mapping of polymer blends, and localized calorimetry. J Vac Sci Technol B 1996; 14: 1486 91.
    • 28. Shi L, Plyasunov S, Bachtold A, McEuen P, Majumdar A. Scanning thermal microscopy of carbon nanotubes using batchfabricated probes. Appl Phys Lett 2000; 77: 4295 7.
    • 29. Ruiz F, Sun W, Pollak F, Venkatraman C. Determination of the thermal conductivity of diamond-like nanocomposite films using a scanning thermal microscope. Appl Phys Lett 1998; 73: 1802 4.
    • 30. Florescu D, Asnin V, Pollak F, Jones A, Ramer J, Schurman M, Ferguson I. Thermal conductivity of fully and partially coalesced lateral epitaxial overgrown GaN/sapphire (0001) by scanning thermal microscopy. Appl Phys Lett 2000; 77: 1464 6.
    • 31. Lefe`vre S, Volz S, Saulnier J, Fuentes C, Trannoy N. Thermal conductivity calibration for hot wire based dc scanning thermal microscopy. Rev Sci Instrum 2003; 74: 2418 23.
    • 32. Wischnath UF, Welker J, Munzel M, Kittel A. The near-field scanning thermal microscope. Rev Sci Instrum 2008; 79: 073708 7.
    • 33. Varesi J, Majumdar A. Scanning Joule expansion microscopy at nanometer scales. Appl Phys Lett 1998; 72: 37 9.
    • 34. Vetrone F, Naccache R, Zamarro´ n A, Juarranz de la Fuente A, Sanz-Rodr´ıguez F, Martinez Maestro L, et al. Temperature sensing using fluorescent nanothermometers. ACS Nano 2010; 4: 3254 8.
    • 35. Gallery J, Gouterman M, Callis J, Khalil G, McLachlan B, Bell J. Luminescent thermometry for aerodynamic measurements. Rev Sci Instrum 1994; 65: 712 20.
    • 36. Li S, Zhang K, Yang J-M, Lin L, Yang H. Single quantum dots as local temperature markers. Nano Lett 2007; 7: 3102 5.
    • 37. de Bastida G, Arregui FJ, Goicoechea J, Matias IR. Quantum dots-based optical fiber temperature sensors fabricated by layerby-Layer. Sen J IEEE 2006; 6: 1378 9.
    • 38. Campiglia AD, De Lima CG. Utilization of inorganic phosphor as a reference signal in solid-surface room-temperature phosphorimetry. Anal Chem 1988; 60: 2165 7.
    • 39. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T. Quantum dots versus organic dyes as fluorescent labels. Nat Meth 2008; 5: 763 75.
    • 40. Walker G, Sundar V, Rudzinski C, Wun A, Bawendi M, Nocera D. Quantum-dot optical temperature probes. Appl Phys Lett 2003; 83: 3555 7.
    • 41. Lo¨w P, Kim B, Takama N, Bergaud C. High-spatial-resolution surface-temperature mapping using fluorescent thermometry. Small 2008; 4: 908 14.
    • 42. Huang B, Babcock H, Zhuang X. Breaking the diffraction barrier: super-resolution imaging of cells. Cell 2010; 143: 1047 58.
    • 43. Rust MJ, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Meth 2006; 3: 793 6.
    • 44. Kolodner P, Tyson J. Microscopic fluorescent imaging of surface temperature profiles with 0.018C resolution. Appl Phys Lett 1982; 40: 782 4.
    • 45. Beechem T, Graham S, Kearney SP, Phinney LM, Serrano JR. Invited Article: Simultaneous mapping of temperature and stress in microdevices using micro-Raman spectroscopy. Rev Sci Instrum 2007; 78: 061301 9.
    • 46. Hart TR, Aggarwal RL, Lax B. Temperature dependence of Raman scattering in silicon. Phys Rev B 1970; 1: 638 42.
    • 47. Serrano JR, Phinney LM, Rogers JW. Temperature amplification during laser heating of polycrystalline silicon microcantilevers due to temperature-dependent optical properties. Int J Heat Mass Tran 2009; 52: 2255 64.
    • 48. Yue Y, Eres G, Wang X, Guo L. Characterization of thermal transport in micro/nanoscale wires by steady-state electroRaman-thermal technique. Appl Phys A 2009; 97: 19 23.
    • 49. Song L, Ma W, Ren Y, Zhou W, Xie S, Tan P, et al. Temperature dependence of Raman spectra in single-walled carbon nanotube rings. Appl Phys Lett 2008; 92: 121905 3.
    • 50. Piscanec S, Cantoro M, Ferrari AC, Zapien JA, Lifshitz Y, Lee ST, et al. Raman spectroscopy of silicon nanowires. Phys Rev B 2003; 68: 241312 4.
    • 51. Calizo I, Balandin AA, Bao W, Miao F, Lau CN. Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano Lett 2007; 7: 2645 9.
    • 52. Yue Y, Zhang J, Wang X. Micro/nanoscale spatial resolution temperature probing for the interfacial thermal characterization of epitaxial graphene on 4H-SiC. Small 2011; 7: 3324 33.
    • 53. Betzig E, Chichester RJ. Single molecules observed by near-field scanning optical microscopy. Science 1993; 262: 1422 5.
    • 54. Pohl D, Denk W, Lanz M. Optical stethoscopy: Image recording with resolution l/20. Appl Phys Lett 1984; 44: 651 3.
    • 55. Lahrech A, Bachelot R, Gleyzes P, Boccara AC. Infraredreflection-mode near-field microscopy using an apertureless probe with a resolution of l/600. Opt Lett 1996; 21: 1315 7.
    • 56. Ku¨ hn S, Ha˚kanson U, Rogobete L, Sandoghdar V. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys Rev Lett 2006; 97: 017402 4.
    • 57. Emory SR, Nie S. Near-field surface-enhanced Raman spectroscopy on single silver nanoparticles. Anal Chem 1997; 69: 2631 5.
    • 58. Nie S, Emory SR. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997; 275: 1102 6.
    • 59. Baffou G, Kreuzer MP, Kulzer F, Quidant R. Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy. Opt Express 2009; 17: 3291 8.
    • 60. Hecht B, Sick B, Wild U, Deckert V, Zenobi R, Martin O, et al. Scanning near-field optical microscopy with aperture probes: Fundamentals and applications. J Chem Phys 2000; 112: 7761 74.
    • 61. Frey H, Keilmann F, Kriele A, Guckenberger R. Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe. Appl Phys Lett 2002; 81: 5030 2.
    • 62. De Wilde Y, Formanek F, Carminati R, Gralak B, Lemoine P-A, Joulain K, et al. Thermal radiation scanning tunnelling microscopy. Nature 2006; 444: 740 3.
    • 63. Wang L, Uppuluri SM, Jin EX, Xu X. Nanolithography using high transmission nanoscale bowtie apertures. Nano Lett 2006; 6: 361 4.
    • 64. Guo J, Wang X, Wang T. Thermal characterization of microscale conductive and nonconductive wires using transient electrothermal technique. J Appl Phys 2007; 101: 063537 3.
    • 65. Guo J, Wang X, Zhang L, Wang T. Transient thermal characterization of micro/submicroscale polyacrylonitrile wires. Appl Phys A 2007; 89: 153 6.
    • 66. Guo L, Wang J, Lin Z, Gacek S, Wang X. Anisotropic thermal transport in highly ordered TiO2 nanotube arrays. J Appl Phys 2009; 106: 123526 3.
    • 67. Kuo CY, Chan CL, Gau C, Liu CW, Shiau SH, Ting JH. Nano temperature sensor using selective lateral growth of carbon nanotube between electrodes. IEEE T Nanotech 2007; 6: 63 9.
    • 68. Zaitsev AM, Levine AM, Zaidi SH. Temperature and chemical sensors based on FIB-written carbon nanowires. Sen J IEEE 2008; 8: 849 56.
    • 69. Di Bartolomeo A, Sarno M, Giubileo F, Altavilla C, Iemmo L, Piano S, et al. Multiwalled carbon nanotube films as small-sized temperature sensors. J Appl Phys 2009; 105: 064518 6.
    • 70. Agarwal A, Buddharaju K, Lao IK, Singh N, Balasubramanian N, Kwong DL. Silicon nanowire sensor array using top down CMOS technology. Sensor Actuat A-Phys 2008; 145 146: 207 13.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • NSF | Thermophysical properties o...
  • NSF | Understanding the thermal r...
  • NSF | Development of Scanning Pho...

Cite this article