Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Kierny, Michael R.; Kay, Brian K.; Cunningham, Thomas D. (2012)
Publisher: Co-Action Publishing
Journal: Nano Reviews
Languages: English
Types: Article
Subjects: phage-display; scFv; Fab; therapeutic antibody; affinity maturation; mutagenesis nanotechnology; carbon nanotube; nanoshell; electrochemical detection
The utility of biomarker detection in tomorrow’s personalized health care field will mean early and accurate diagnosis of many types of human physiological conditions and diseases. In the search for biomarkers, recombinant affinity reagents can be generated to candidate proteins or post-translational modifications that differ qualitatively or quantitatively between normal and diseased tissues. The use of display technologies, such as phagedisplay, allows for manageable selection and optimization of affinity reagents for use in biomarker detection. Here we review the use of recombinant antibody fragments, such as scFvs and Fabs, which can be affinity-selected from phagedisplay libraries, to bind with both high specificity and affinity to biomarkers of cancer, such as Human Epidermal growth factor Receptor 2 (HER2) and Carcinoembryonic antigen (CEA). We discuss how these recombinant antibodies can be fabricated into nanostructures, such as carbon nanotubes, nanowires, and quantum dots, for the purpose of enhancing detection of biomarkers at low concentrations (pg/mL) within complex mixtures such as serum or tissue extracts. Other sensing technologies, which take advantage of ‘Surface Enhanced Raman Scattering’ (gold nanoshells), frequency changes in piezoelectric crystals (quartz crystal microbalance), or electrical current generation and sensing during electrochemical reactions (electrochemical detection), can effectively provide multiplexed platforms for detection of cancer and injury biomarkers. Such devices may soon replace the traditional time consuming ELISAs and Western blots, and deliver rapid, point-of-care diagnostics to market.Keywords: phage-display; scFv; Fab; therapeutic antibody; affinity maturation; mutagenesis; nanotechnology; carbon nanotube; nanoshell; electrochemical detection(Published: 23 July 2012)Citation: Nano Reviews 2012, 3: 17240 - http://dx.doi.org/10.3402/nano.v3i0.17240
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Blonder J, Issaq HJ, Veenstra TD. Proteomic biomarker discovery: its more than just mass spectrometry. Electrophoresis 2011; 32: 1541 8. Available from: http://onlinelibrary. wiley.com/doi/10.1002/elps.201000585/full
    • 2. Simpson KL, Whetton AD, Dive C. Quantitative mass spectrometry-based techniques for clinical use: biomarker identification and quantification. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877: 1240 9. Available from: http://www.sciencedirect.com/science/article/pii/S157002320800 8453
    • 3. Hunt DF, Yates JR III, Shabanowitz J, Winston S, Hauer CR. Protein sequencing by tandem mass spectrometry. Proc Natl Acad Sci USA 1986; 83: 6233 7. Available from: http:// www.pnas.org/content/83/17/6233.short
    • 4. Rifai N, Gillette MA, Carr SA. Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol 2006; 24: 971 83. Available from: http:// www.nature.com/nbt/journal/v24/n8/full/nbt1235.html
    • 5. Braunstein GD, Rasor J, Danzer H, Adler D, Wade ME. Serum human chorionic gonadotropin levels throughout normal pregnancy. Am J Obstet Gynecol 1976; 126: 678 81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/984142
    • 6. Waller DK, Lustig LS, Smith AH, Hook EB. Alphafetoprotein: a biomarker for pregnancy outcome. Epidemiology 1993; 4: 471 6. Available from: http://journals.lww.com/ epidem/Abstract/1993/09000/Alpha_Fetoprotein__A_Biomarker_ for_Pregnancy.14.aspx
    • 7. Thygesen K, Alpert JS, White HD. Universal definition of myocardial infarction. J Am Coll Cardiol 2007; 50: 2173 95. Available from: http://www.sciencedirect.com/science/article/ pii/S0735109707029579
    • 8. Pineda JA, Lewis SB, Valadka AB, Papa L, Hannay HJ, Heaton SC, et al. Clinical significance of alphaIIspectrin breakdown products in cerebrospinal fluid after severe traumatic brain injury. J Neurotrauma 2007; 24: 354 66. Available from: http://online.liebertpub.com/doi/abs/ 10.1089/neu.2006.003789
    • 9. Banyan Biomarker Immunoassays. Available from: http:// banyanbio.com [cited 15 December 2011].
    • 10. Gold P, Freedman SO. Demonstration of tumor-specific antigens in human colonic carcinomata by immunological tolerance and absorption techniques. J Exp Med 1965; 121: 439 62. Available from: http://jem.rupress.org/content/121/3/ 439.abstract
    • 11. Bast RC Jr., Feeney M, Lazarus H, Nadler LM, Colvin RB, Knapp RC, et al. Reactivity of a monoclonal antibody with human ovarian carcinoma. J Clin Invest 1981; 68: 1331 7. Available from: http://www.jci.org/articles/view/110380
    • 12. Stamey TA, Yang N, Hay AR, McNeal JE, Freiha FS, Redwine E, et al. Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate. N Engl J Med 1987; 317: 909 16. Available from: http://www.nejm.org/doi/full/10.1056/ NEJM198710083171501
    • 13. Pane F, Frigeri F, Sindona M, Luciano L, Ferrara F, Cimino R, et al. Neutrophilic-chronic myeloid leukemia: a distinct disease with a specific molecular marker (BCR/ABL with C3/A2 junction). Blood 1996; 88: 2410 4. Available from: http://bloodjournal.hematologylibrary.org/content/88/7/ 2410.long
    • 14. Ross JS, Fletcher JA, Linette GP, Stec J, Clark E, Ayers M, et al. The HER-2/neu gene and protein in breast cancer 2003: biomarker and target of therapy. Oncologist 2003; 8: 307 25. Available from: http://theoncologist.alphamedpress. org/content/8/4/307.full
    • 15. Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975; 256: 495 7. Available from: http://www.nature.com/nature/journal/ v256/n5517/pdf/256495a0.pdf
    • 16. Kotlan B, Glassy MC. Antibody phage display: overview of a powerful technology that has quickly translated to the clinic. Methods Mol Biol 2009; 562: 1 15. Available from: http://www. springerlink.com/content/j247u08447122q23/#section 91327& page 1
    • 17. Clamp M, Fry B, Kamal M, Xie X, Cuff J, Lin MF, et al. Distinguishing protein-coding and noncoding genes in the human genome. Proc Natl Acad Sci USA 2007; 104: 19428 33. Available from: http://www.pnas.org/content/104/49/ 19428.long
    • 18. Lo AS, Zhu Q, Marasco WA. Intracellular antibodies (intrabodies) and their therapeutic potential. Handb Exp Pharmacol 2008; 181: 343 73. Available from: http://www. springerlink.com/content/j67v48494178505k/
    • 19. Cardinale A, Biocca S. The potential of intracellular antibodies for therapeutic targeting of protein-misfolding diseases. Trends Mol Med 2008; 14: 373 80. Available from: http://www. sciencedirect.com/science/article/pii/S1471491408001500
    • 20. Boder ET, Midelfort KS, Wittrup KD. Directed evolution of antibody fragments with monovalent femtomolar antigenbinding affinity. Proc Natl Acad Sci USA 2000; 97: 10701 5. Available from: http://www.pnas.org/content/97/20/10701.long
    • 21. Hanes J, Schaffitzel C, Knappik A, Pluckthun A. Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display. Nat Biotechnol 2000; 18: 1287 92. Available from: http://www.nature.com/doifinder/ 10.1038/82407
    • 22. Abler LL, Sheets MD. Expression of scFv antibodies in Xenopus embryos to disrupt protein function: implications for large-scale evaluation of the embryonic proteome. Genesis 2003; 35: 107 13. Available from: http://onlinelibrary.wiley. com/doi/10.1002/gene.10171/abstract
    • 23. Gulyani A, Allan R, Wu J, Gremyachinskiy D, Lewis S, Dewar B, et al. A Src family biosensor based on an engineered scaffold enables sensitive quantitation. Nat Chem Biol 2011; 7: 437 44. Available from: http://www.nature.com/nchembio/journal/v7/ n7/full/nchembio.585.html
    • 24. Liu CC, Mack AV, Tsao ML, Mills JH, Lee HS, Choe H, et al. Protein evolution with an expanded genetic code. Proc Natl Acad Sci USA 2008; 105: 17688 93. Available from: http:// www.pnas.org/content/105/46/17688.long
    • 25. Athavankar S, Peterson BR. Control of gene expression with small molecules: biotin-mediated acylation of targeted lysine residues in recombinant yeast. Chem Biol 2003; 10: 1245 53. Available from: http://www.sciencedirect.com/science/article/ pii/S1074552103002527
    • 26. Hegner M, Backmann N, Zahnd C, Huber F, Bietsch A, Pluckthun A, et al. A label-free immunosensor array using single-chain antibody fragments. Proc Natl Acad Sci USA 2005; 102: 14587 92. Available from: http://www.pnas.org/ content/102/41/14587.abstract
    • 27. Fredriksson S, Gullberg M, Jarvius J, Olsson C, Pietras K, Gustafsdottir SM, et al. Protein detection using proximitydependent DNA ligation assays. Nat Biotechnol 2002; 20: 473 7. Available from: http://www.nature.com/nbt/journal/v20/ n5/full/nbt0502 473.html
    • 28. Soderberg O, Gullberg M, Jarvius M, Ridderstrale K, Leuchowius KJ, Jarvius J, et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods 2006; 3: 995 1000. Available from: http://www.nature.com/nmeth/journal/v3/n12/full/nmeth947.html
    • 29. Schallmeiner E, Oksanen E, Ericsson O, Spangberg L, Eriksson S, Stenman UH, et al. Sensitive protein detection via triple-binder proximity ligation assays. Nat Methods 2007; 4: 135 7. Available from: http://www.nature.com/nmeth/ journal/v4/n2/full/nmeth974.html
    • 30. Gullberg M, Gustafsdottir SM, Schallmeiner E, Jarvius J, Bjarnegard M, Betsholtz C, et al. Cytokine detection by antibody-based proximity ligation. Proc Natl Acad Sci USA 2004; 101: 8420 4. Available from: http://www.pnas.org/ content/101/22/8420.long
    • 31. Adams GP, Schier R, McCall AM, Simmons HH, Horak EM, Alpaugh RK, et al. High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res 2001; 61: 4750 5. Available from: http://cancerres. aacrjournals.org/content/61/12/4750.long
    • 32. Bird RE, Hardman KD, Jacobson JW, Johnson S, Kaufman BM, Lee SM, et al. Single-chain antigen-binding proteins. Science 1988; 242: 423 6. Available from: http:// www.sciencemag.org/content/242/4877/423.long
    • 33. Huston JS, Levinson D, Mudgett-Hunter M, Tai MS, Novotny J, Margolies MN, et al. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc Natl Acad Sci USA 1988; 85: 5879 83. Available from: http:// www.pnas.org/content/85/16/5879.long
    • 34. Hanes J, Jermutus L, Weber-Bornhauser S, Bosshard HR, Pluckthun A. Ribosome display efficiently selects and evolves high-affinity antibodies in vitro from immune libraries. Proc Natl Acad Sci USA 1998; 95: 14130 35. Available from: http:// www.pnas.org/content/95/24/14130.abstract
    • 35. Rader C. Overview on concepts and applications of Fab antibody fragments. Curr Protoc Protein Sci 2009; Chapter 6: Unit 6.9. Available from: http://onlinelibrary.wiley.com/doi/ 10.1002/0471140864.ps0609s55/abstract
    • 36. Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, et al. Naturally occurring antibodies devoid of light chains. Nature 1993; 363: 446 8. Available from: http://www.nature.com/nature/journal/v363/ n6428/abs/363446a0.html
    • 37. Saerens D, Ghassabeh GH, Muyldermans S. Single-domain antibodies as building blocks for novel therapeutics. Curr Opin Pharmacol 2008; 8: 600 8. Available from: http:// www.sciencedirect.com/science/article/pii/S1471489208000957
    • 38. Koide A, Bailey CW, Huang X, Koide S. The fibronectin type III domain as a scaffold for novel binding proteins. J Mol Biol 1998; 284: 1141 51. Available from: http://www.sciencedirect. com/science/article/pii/S0022283698922380
    • 39. Forrer P, Stumpp MT, Binz HK, Pluckthun A. A novel strategy to design binding molecules harnessing the modular nature of repeat proteins. FEBS Lett 2003; 539: 2 6. Available from: http://www.sciencedirect.com/science/article/pii/S001457 9303001777
    • 40. Binz HK, Stumpp MT, Forrer P, Amstutz P, Pluckthun A. Designing repeat proteins: well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins. J Mol Biol 2003; 332: 489 503. Available from: http://www.sciencedirect.com/science/article/pii/S002228360300 8969
    • 41. Nord K, Gunneriusson E, Ringdahl J, Stahl S, Uhlen M, Nygren PA. Binding proteins selected from combinatorial libraries of an alpha-helical bacterial receptor domain. Nat Biotechnol 1997; 15: 772 7. Available from: http://www. nature.com/nbt/journal/v15/n8/full/nbt0897 772.html
    • 42. Huang R, Fang P, Kay BK. Isolation of monobodies that bind specifically to the SH3 domain of the Fyn tyrosine protein kinase. New Biotechnol 2012; 29: 526 533. Available from: http://www.sciencedirect.com/science/article/ pii/S1871678411002640
    • 43. Boersma YL, Pluckthun A. DARPins and other repeat protein scaffolds: advances in engineering and applications. Curr Opin Biotechnol 2011; 22: 849 57. Available from: http:// www.sciencedirect.com/science/article/pii/S095816691100615X
    • 44. Boersma YL, Chao G, Steiner D, Wittrup KD, Pluckthun A. Bispecific designed ankyrin repeat proteins (DARPins) targeting epidermal growth factor receptor inhibit A431 cell proliferation and receptor recycling. J Biol Chem 2011; 286: 41273 85. Available from: http://www.jbc.org/content/286/48/ 41273.long
    • 45. Lofblom J, Feldwisch J, Tolmachev V, Carlsson J, Stahl S, Frejd FY. Affibody molecules: engineered proteins for therapeutic, diagnostic and biotechnological applications. FEBS Lett 2010; 584: 2670 80. Available from: http:// www.sciencedirect.com/science/article/pii/S001457931000284X
    • 46. Oliphant AR, Brandl CJ, Struhl K. Defining the sequence specificity of DNA-binding proteins by selecting binding-sites from random-sequence oligonucleotides analysis of yeast GCN4 protein. Mol Cell Biol 1989; 9: 2944 9. Available from: http://mcb.asm.org/content/9/7/2944.long
    • 47. Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment RNA ligands to bacteriophage-T4 DNApolymerase. Science 1990; 249: 505 10. Available from: http:// www.jstor.org/stable/view/2874490
    • 48. Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature 1990; 346: 818 22. Available from: http://www.nature.com/nature/journal/ v346/n6287/abs/346818a0.html
    • 49. Yonezawa M, Doi N, Kawahashi Y, Higashinakagawa T, Yanagawa H. DNA display for in vitro selection of diverse peptide libraries. Nucleic Acids Res 2003; 31: e118. Available from: http://nar.oxfordjournals.org/content/31/19/e118.long
    • 50. Roberts RW, Szostak JW. RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc Natl Acad Sci USA 1997; 94: 12297 302. Available from: http://www.pnas.org/ content/94/23/12297.long
    • 51. Hanes J, Pluckthun A. In vitro selection and evolution of functional proteins by using ribosome display. Proc Natl Acad Sci USA 1997; 94: 4937 42. Available from: http://www.pnas. org/content/94/10/4937.long
    • 52. Gai SA, Wittrup KD. Yeast surface display for protein engineering and characterization. Curr Opin Struct Biol 2007; 17: 467 73. Available from: http://www.sciencedirect. com/science/article/pii/S0959440X07001194
    • 53. Georgiou G, Stathopoulos C, Daugherty PS, Nayak AR, Iverson BL, Curtiss R. Display of heterologous proteins on the surface of microorganisms: from the screening of combinatorial libraries to live recombinant vaccines. Nat Biotechnol 1997; 15: 29 34. Available from: http://www.nature.com/nbt/ journal/v15/n1/full/nbt0197-29.html
    • 54. Smith GP. Filamentous fusion phage novel expression vectors that display cloned antigens on the virion surface. Science 1985; 228: 1315 17. Available from: http://www.jstor.org/stable/ view/1694587
    • 55. Hoogenboom HR. Overview of antibody phage-display technology and its applications. Methods Mol Biol 2002; 178: 1 37. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11968478
    • 56. Lipovsek D, Pluckthun A. In-vitro protein evolution by ribosome display and mRNA display. J Immunol Methods 2004; 290: 51 67. Available from: http://www.sciencedirect. com/science/article/pii/S0022175904001309
    • 57. Thie H, Voedisch B, Dubel S, Hust M, Schirrmann T. Affinity maturation by phage display. Methods Mol Biol 2009; 525: 309 22, xv. Available from: http://www.springerlink.com/ content/l232242669467g17/?MUD MP
    • 58. Voller A, Bartlett A, Bidwell DE. Enzyme immunoassays with special reference to ELISA techniques. J Clin Pathol 1978; 31: 507 20. Available from: http://jcp.bmj.com/content/ 31/6/507.long
    • 59. Webster R. Filamentous phage biology. In: Barbas CF, Scott JK, Silverman G, eds. Phage display: a laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2001. p. 1 37.
    • 60. O'Connell D, Becerril B, Roy-Burman A, Daws M, Marks JD. Phage versus phagemid libraries for generation of human monoclonal antibodies. J Mol Biol 2002; 321: 49 56. Available from: http://www.sciencedirect.com/science/article/ pii/S0022283602005612
    • 61. Hoogenboom HR, de Bruine AP, Hufton SE, Hoet RM, Arends JW, Roovers RC. Antibody phage display technology and its applications. Immunotechnology 1998; 4: 1 20. Available from: http://www.sciencedirect.com/science/article/pii/ S1380293398000074
    • 62. Gao C, Mao S, Lo CH, Wirsching P, Lerner RA, Janda KD. Making artificial antibodies: a format for phage display of combinatorial heterodimeric arrays. Proc Natl Acad Sci USA 1999; 96: 6025 30. Available from: http://www.pnas.org/content/96/11/6025.long
    • 63. Gao C, Mao S, Kaufmann G, Wirsching P, Lerner RA, Janda KD. A method for the generation of combinatorial antibody libraries using pIX phage display. Proc Natl Acad Sci USA 2002; 99: 12612 6. Available from: http://www.pnas.org/ content/99/20/12612.long
    • 64. Shi L, Wheeler JC, Sweet RW, Lu J, Luo J, Tornetta M, et al. De novo selection of high-affinity antibodies from synthetic fab libraries displayed on phage as pIX fusion proteins. J Mol Biol 2010; 397: 385 96. Available from: http://www.sciencedirect. com/science/article/pii/S002228361000080X
    • 65. Kristensen P, Winter G. Proteolytic selection for protein folding using filamentous bacteriophages. Fold Des 1998; 3: 321 8. Available from: http://www.sciencedirect.com/science/ article/pii/S1359027898000443
    • 66. de Wildt RM, Mundy CR, Gorick BD, Tomlinson IM. Antibody arrays for high-throughput screening of antibodyantigen interactions. Nat Biotechnol 2000; 18: 989 94. Available from: http://www.nature.com/nbt/journal/v18/n9/full/ nbt0900_989.html
    • 67. Wrighton NC, Farrell FX, Chang R, Kashyap AK, Barbone FP, Mulcahy LS, et al. Small peptides as potent mimetics of the protein hormone erythropoietin. Science 1996; 273: 458 64. Available from: http://www.sciencemag. org/content/273/5274/458.long
    • 68. Winter G, Griffiths AD, Hawkins RE, Hoogenboom HR. Making antibodies by phage display technology. Annu Rev Immunol 1994; 12: 433 55. Available from: http://www. annualreviews.org/doi/abs/10.1146/annurev.iy.12.040194.002245
    • 69. Schier R, Bye J, Apell G, McCall A, Adams GP, Malmqvist M, et al. Isolation of high-affinity monomeric human anti-c-erb B-2 single chain Fv using affinity-driven selection. J Mol Biol 1996; 255: 28 43. Available from: http://www.sciencedirect. com/science/article/pii/S0022283696900042
    • 70. Wang JP, Liu YL, Teesalu T, Sugahara KN, Kotamrajua VR, Adams JD, et al. Selection of phage-displayed peptides on live adherent cells in microfluidic channels. Proc Natl Acad Sci USA 2011; 108: 6909 14. Available from: http://www.pnas.org/ content/108/17/6909.long
    • 71. Kay BK, Thai S, Volgina VV. High-throughput biotinylation of proteins. Methods Mol Biol 2009; 498: 185 96. Available from: http://www.springerlink.com/content/h5t6k868jn621gh4/ ?MUD MP
    • 72. Steiner D, Forrer P, Pluckthun A. Efficient selection of DARPins with sub-nanomolar affinities using SRP phage display. J Mol Biol 2008; 382: 1211 27. Available from: http://www.sciencedirect.com/science/article/pii/S002228360800 9650
    • 73. Scholle MD, Kriplani U, Pabon A, Sishtla K, Glucksman MJ, Kay BK. Mapping protease substrates by using a biotinylated phage substrate library. Chembiochem 2006; 7: 834 8. Available from: http://onlinelibrary.wiley.com/doi/10. 1002/cbic.200500427/abstract
    • 74. Foote J, Eisen HN. Breaking the affinity ceiling for antibodies and T cell receptors. Proc Natl Acad Sci USA 2000; 97: 10679 81. Available from: http://www.pnas.org/content/97/20/10679. long
    • 75. Batista FD, Neuberger MS. Affinity dependence of the B cell response to antigen: a threshold, a ceiling, and the importance of off-rate. Immunity 1998; 8: 751 9. Available from: http:// www.sciencedirect.com/science/article/pii/S1074761300805804
    • 76. Schier R, McCall A, Adams GP, Marshall KW, Merritt H, Yim M, et al. Isolation of picomolar affinity anti-c-erbB-2 single-chain Fv by molecular evolution of the complementarity determining regions in the center of the antibody binding site. J Mol Biol 1996; 263: 551 67. Available from: http://www. sciencedirect.com/science/article/pii/S0022283696905987
    • 77. Groves M, Lane S, Douthwaite J, Lowne D, Rees DG, Edwards B, et al. Affinity maturation of phage display antibody populations using ribosome display. J Immunol Methods 2006; 313: 129 39. Available from: http://www.sciencedirect. com/science/article/pii/S0022175906001049
    • 78. van den Beucken T, Pieters H, Steukers M, van der Vaart M, Ladner RC, Hoogenboom HR, et al. Affinity maturation of Fab antibody fragments by fluorescent-activated cell sorting of yeast-displayed libraries. FEBS Lett 2003; 546: 288 94. Available from: http://www.sciencedirect.com/science/article/pii/ S0014579303006021
    • 79. Kenrick SA, Daugherty PS. Bacterial display enables efficient and quantitative peptide affinity maturation. Protein Eng Des Sel 2010; 23: 9 17. Available from: http://peds.oxfordjournals. org/content/23/1/9.long
    • 80. Ling MM. Large antibody display libraries for isolation of high-affinity antibodies. Comb Chem High Throughput Screen 2003; 6: 421 32. Available from: http://www.benthamdirect. pages/content.php?CCHTS/2003/00000006/00000005/0001A. SGM.
    • 81. Marks JD, Griffiths AD, Malmqvist M, Clackson TP, Bye JM, Winter G. By-passing immunization: building high affinity human antibodies by chain shuffling. Biotechnology (NY) 1992; 10: 779 83. Available from: http://www.nature.com/nbt/ journal/v10/n7/pdf/nbt0792-779.pdf
    • 82. Dyson MR, Zheng Y, Zhang C, Colwill K, Pershad K, Kay BK, et al. Mapping protein interactions by combining antibody affinity maturation and mass spectrometry. Anal Biochem 2011; 417: 25 35. Available from: http:// www.sciencedirect.com/science/article/pii/S0003269711003009
    • 83. Brockmann EC, Akter S, Savukoski T, Huovinen T, Lehmusvuori A, Leivo J, et al. Synthetic single-framework antibody library integrated with rapid affinity maturation by VL shuffling. Protein Eng Des Sel 2011; 24: 691 700. Available from: http://peds.oxfordjournals.org/content/24/9/691.long
    • 84. Fitzgerald J, Leonard P, Darcy E, Danaher M, O'Kennedy R. Light-chain shuffling from an antigen-biased phage pool allows 185-fold improvement of an anti-halofuginone singlechain variable fragment. Anal Biochem 2011; 410: 27 33. Available from: http://www.sciencedirect.com/science/article/ pii/S0003269710007220
    • 85. Jermutus L, Honegger A, Schwesinger F, Hanes J, Pluckthun A. Tailoring in vitro evolution for protein affinity or stability. Proc Natl Acad Sci USA 2001; 98: 75 80. Available from: http:// www.pnas.org/content/98/1/75.long
    • 86. Famm K, Hansen L, Christ D, Winter G. Thermodynamically stable aggregation-resistant antibody domains through directed evolution. J Mol Biol 2008; 376: 926 31. Available from: http://www.sciencedirect.com/science/article/pii/S002228360701 4349
    • 87. Cadwell RC, Joyce GF. Randomization of genes by PCR mutagenesis. PCR Methods Appl 1992; 2: 28 33. Available from: http://genome.cshlorg/content/2/1/28.long
    • 88. Zaccolo M, Williams DM, Brown DM, Gherardi E. An approach to random mutagenesis of DNA using mixtures of triphosphate derivatives of nucleoside analogues. J Mol Biol 1996; 255: 589 603. Available from: http://www.sciencedirect. com/science/article/pii/S1046202305000162
    • 89. Yang WP, Green K, Pinzsweeney S, Briones AT, Burton DR, Barbas CF. CDR walking mutagenesis for the affinity maturation of a potent human anti-HIV-1 Antibody into the picomolar range. J Mol Biol 1995; 254: 392 403. Available from: http:// www.sciencedirect.com/science/article/pii/S0022283685706262
    • 90. McCafferty J, Griffiths AD, Winter G, Chiswell DJ. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 1990; 348: 552 4. Available from: http://www. nature.com/nature/journal/v348/n6301/abs/348552a0.html
    • 91. Thie H, Meyer T, Schirrmann T, Hust M, Dubel S. Phage display derived therapeutic antibodies. Curr Pharm Biotechnol 2008; 9: 439 46. Available from: http://www.benthamdirect.org/ pages/content.php?CPB/2008/00000009/00000006/0004G.SGM
    • 92. Nelson AL, Dhimolea E, Reichert JM. Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discov 2010; 9: 767 74. Available from: http://www.nature. com/nrd/journal/v9/n10/full/nrd3229.html
    • 93. Rau R. Adalimumab (a fully human anti-tumour necrosis factor alpha monoclonal antibody) in the treatment of active rheumatoid arthritis: the initial results of five trials. Ann Rheum Dis 2002; 61(Suppl 2): ii70 3.
    • 94. Abbott drug tops sales as Lipitor, Plavix era ends. Available from: http://uk.reuters.com/article/2012/04/11/uk-pharmaceuticalsabbott-idUKBRE83A0PU20120411[cited 4 November 2012].
    • 95. den Broeder A, van de Putte L, Rau R, Schattenkirchner M, Van Riel P, Sander O, et al. A single dose, placebo controlled study of the fully human anti-tumor necrosis factor-alpha antibody adalimumab (D2E7) in patients with rheumatoid arthritis. J Rheumatol 2002; 29: 2288 98. Available from: http://ard.bmj.com/content/62/12/1168.long
    • 96. Osbourn J, Groves M, Vaughan T. From rodent reagents to human therapeutics using antibody guided selection. Methods 2005; 36: 61 8. Available from: http://www.sciencedirect.com/ science/article/pii/S1046202305000162
    • 97. Xian-Li H, Guo-qiang B. Guided Selection Methods Through Chain Shuffling. In: Aitken R, ed. antibody phage display. New York, NY: Humana Press; 2009. p. 133 42.
    • 98. Hartmut Kupper JS, Tracey D, Kalden JR. Handbook of therapeutic antibodies. Hoboken, NJ: Wiley; 2008. p. 697 732.
    • 99. Benlysta (Belimumab). Available from: http://www.hgsi.com/ benlysta-belimumab-3.html [cited December 2011].
    • 100. Stohl W, Hilbert DM. The discovery and development of belimumab: the anti-BLyS-lupus connection. Nat Biotechnol 2012; 30: 69 77. Available from: http://www.nature.com/nbt/ journal/v30/n1/full/nbt.2076.html
    • 101. Schiemann B, Gommerman JL, Vora K, Cachero TG, ShulgaMorskaya S, Dobles M, et al. An essential role for BAFF in the normal development of B cells through a BCMAindependent pathway. Science 2001; 293: 2111 4. Available from: http://www.sciencemag.org/content/293/5537/2111.short
    • 102. Dennis GJ. Belimumab: a BLyS-specific inhibitor for the treatment of systemic lupus erythematosus. Clin Pharmacol Ther 2012; 91: 143 9. Available from: http://www.nature.com/ clpt/journal/v91/n1/full/clpt2011290a.html
    • 103. FDA approves Benlysta to treat lupus. Available from: http:// www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm 246489.htm[cited December 2011]
    • 104. Navarra SV, Guzman RM, Gallacher AE, Hall S, Levy RA, Jimenez RE, et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet 2011; 377: 721 31. Available from: http://www.thelancet.com/journals/lancet/article/ PIIS0140-6736(10)61354-2/fulltext
    • 105. Baker KP, Edwards BM, Main SH, Choi GH, Wager RE, Halpern WG, et al. Generation and characterization of LymphoStat-B, a human monoclonal antibody that antagonizes the bioactivities of B lymphocyte stimulator. Arthritis Rheum 2003; 48: 3253 65. Available from: http://onlinelibrary. wiley.com/doi/10.1002/art.11299/abstract;jsessionid 3544747 B23B8B065F8A05B519826EACC.d02t04
    • 106. Illumina. Available from: http://www.illumina.com [cited April 2012].
    • 107. Heller MJ. DNA microarray technology: devices, systems, and applications. Annu Rev Biomed Eng 2002; 4: 129 53. Available from: http://www.annualreviews.org/doi/full/10.1146/ annurev.bioeng.4.020702.153438
    • 108. Ramachandran N, Srivastava S, Labaer J. Applications of protein microarrays for biomarker discovery. Proteomics Clin Appl 2008; 2: 1444 59. Available from: http://onlinelibrary. wiley.com/doi/10.1002/prca.200800032/abstract
    • 109. Weber A, Hengge UR, Stricker I, Tischoff I, Markwart A, Anhalt K, et al. Protein microarrays for the detection of biomarkers in head and neck squamous cell carcinomas. Hum Pathol 2007; 38: 228 38. Available from: http:// www.sciencedirect.com/science/article/pii/S004681770600459X
    • 110. Acevedo B, Perera Y, Ruiz M, Rojas G, Benitez J, Ayala M, et al. Development and validation of a quantitative ELISA for the measurement of PSA concentration. Clin Chim Acta 2002; 317: 55 63. Available from: http://www.sciencedirect.com/science/ article/pii/S0009898101007495
    • 111. Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, Kelly C, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet 2005; 365: 1231 38. Available from: http:// www.sciencedirect.com/science/article/pii/S014067360574811X
    • 112. Diamandis EP. Mass spectrometry as a diagnostic and a cancer biomarker discovery tool opportunities and potential limitations. Mol Cell Proteomics 2004; 3: 367 78. Available from: http://www.mcponline.org/content/3/4/367.full
    • 113. Kim SN, Rusling JF, Papadimitrakopoulos F. Carbon nanotubes for electronic and electrochemical detection of biomolecules. Adv Mater 2007; 19: 3214 28. Available from: http:// onlinelibrary.wiley.com/doi/10.1002/adma.200700665/abstract
    • 114. O'Connor M, Kim SN, Killard AJ, Forster RJ, Smyth MR, Papadimitrakopoulos F, et al. Mediated amperometric immunosensing using single walled carbon nanotube forests. Analyst 2004; 129: 1176 80. Available from: http://pubs.rsc.org/en/ Content/ArticleLanding/2004/AN/b412805b
    • 115. Rusling JF, Munge BS, Krause CE, Malhotra R, Patel V, Gutkind JS. Electrochemical immunosensors for interleukin-6. Comparison of carbon nanotube forest and gold nanoparticle platforms. Electrochem Commun 2009; 11: 1009 12. Available from: http://www.sciencedirect.com/science/article/ pii/S1388248109001088
    • 116. Riedel F, Zaiss I, Herzog D, Gotte K, Naim R, Hormann K. Serum levels of interleukin-6 in patients with primary head and neck squamous cell carcinoma. Anticancer Res 2005; 25: 2761 5. Available from: http://ar.iiarjournals.org/content/25/4/ 2761.long
    • 117. Rusling JF, Malhotra R, Patel V, Vaque JP, Gutkind JS. Ultrasensitive electrochemical immunosensor for oral cancer biomarker IL-6 using carbon nanotube forest electrodes and multilabel amplification. Anal Chem 2010; 82: 3118 23. Available from: http://pubs.acs.org/doi/abs/10.1021/ac902802b
    • 118. Rusling JF, Chikkaveeraiah BV, Bhirde A, Malhotra R, Patel V, Gutkind JS. Single-wall carbon nanotube forest arrays for immunoelectrochemical measurement of four protein biomarkers for prostate cancer. Anal Chem 2009; 81: 9129 34. Available from: http://pubs.acs.org/doi/abs/10.1021/ac9018022
    • 119. Chen RJ, Bangsaruntip S, Drouvalakis KA, Kam NW, Shim M, Li Y, et al. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc Natl Acad Sci USA 2003; 100: 4984 9. Available from: http:// www.pnas.org/content/100/9/4984.long
    • 120. Heller I, Janssens AM, Mannik J, Minot ED, Lemay SG, Dekker C. Identifying the mechanism of biosensing with carbon nanotube transistors. Nano Lett 2008; 8: 591 5. Available from: http://pubs.acs.org/doi/abs/10.1021/nl072996i
    • 121. Lee JO, Park DW, Kim YH, Kim BS, So HM, Won K, et al. Detection of tumor markers using single-walled carbon nanotube field effect transistors. J Nanosci Nanotechnol 2006; 6: 3499 502. Available from: http://www.ingentaconnect. com/content/asp/jnn/2006/00000006/00000011/art00044
    • 122. Lo YS, Nam DH, So HM, Chang H, Kim JJ, Kim YH, et al. Oriented immobilization of antibody fragments on Nidecorated single-walled carbon nanotube devices. ACS Nano 2009; 3: 3649 55. Available from: http://pubs.acs.org/doi/abs/ 10.1021/nn900540a
    • 123. Wang CW, Pan CY, Wu HC, Shih PY, Tsai CC, Liao KT, et al. In situ detection of chromogranin a released from living neurons with a single-walled carbon-nanotube field-effect transistor. Small 2007; 3: 1350 5. Available from: http:// onlinelibrary.wiley.com/doi/10.1002/smll.200600723/abstract
    • 124. Lerner MB, D'Souza J, Pazina T, Dailey J, Goldsmith BR, Robinson MK, et al. Hybrids of a genetically engineered antibody and a carbon nanotube transistor for detection of prostate cancer biomarkers. ACS Nano 2012; 6: 5143 5149. Available from: http://pubs.acs.org/doi/full/10.1021/nn300819s
    • 125. Weber GF, Lett GS, Haubein NC. Osteopontin is a marker for cancer aggressiveness and patient survival. Br J Cancer 2010; 103: 861 9. Available from: http://www.nature.com/bjc/journal/ v103/n6/full/6605834a.html
    • 126. Raman CV, Krishnan KS. A new type of secondary radiation (Reprinted from Nature 1928; 121: 501 2). Curr Sci 1998; 74: 381. Available from: http://www.ias.ac.in/j_archive/currsci/74/4/ 381-381/viewpage.html
    • 127. Raman ICV. A change of wave-length in light scattering. Nature 1928; 121: 465 6.
    • 128. Landsherg G, Mandelstam L. Eine neue Erscheinung bei der Lichtzerstreuung in Krystallen. Naturwissenschaften 1928; 16: 557 8.
    • 129. Fleischmann M, Hendra PJ, McQuilla AJ. Raman-spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 1974; 26: 163 6. Available from: http://www.sciencedirect.com/ science/article/pii/0009261474853881
    • 130. Jeanmaire DL, van Duyne RP. Surface raman electrochemistry part I. Heterocyclic, aromatic and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem 1977; 84: 1 20.
    • 131. Albrecht MG, Creighton JA. Anomalously intense ramanspectra of pyridine at a silver electrode. J Am Chem Soc 1977; 99: 5215 7. Available from: http://pubs.acs.org/doi/abs/10.1021/ ja00457a071
    • 132. Porter MD, Ni J, Lipert RJ, Dawson GB. Immunoassay readout method using extrinsic Raman labels adsorbed on immunogold colloids. Anal Chem 1999; 71: 4903 8. Available from: http://pubs.acs.org/doi/abs/10.1021/ac990616a
    • 133. Mirkin CA, Cao YC, Jin RC, Nam JM, Thaxton CS. Raman dye-labeled nanoparticle probes for proteins. J Am Chem Soc 2003; 125: 14676 7. Available from: http://pubs.acs.org/doi/ pdfplus/10.1021/ja0366235
    • 134. Schlu¨ cker S, Kiefer W. Selective Detection of Proteins and Nucleic Acids with Biofunctionalized eds. Frontiers of Molecular Spectroscopy. Amsterdam, Netherlands: Elsevier; 2009. p. 267 88.
    • 135. Chon H, Lee S, Son SW, Oh CH, Choo J. Highly sensitive immunoassay of lung cancer marker carcinoembryonic antigen using surface-enhanced Raman scattering of hollow gold nanospheres. Anal Chem 2009; 81: 3029 34. Available from: http://pubs.acs.org/doi/abs/10.1021/ac802722c
    • 136. Lee M, Lee S, Lee JH, Lim HW, Seong GH, Lee EK, et al. Highly reproducible immunoassay of cancer markers on a gold-patterned microarray chip using surface-enhanced Raman scattering imaging. Biosens Bioelectron 2011; 26: 2135 41. Available from: http://www.sciencedirect.com/science/article/ pii/S0956566310006342
    • 137. Bishnoi SW, Lin YJ, Tibudan M, Huang YM, Nakaema M, Swarup V, et al. SERS biodetection using gold-silica nanoshells and nitrocellulose membranes. Anal Chem 2011; 83: 4053 60. Available from: http://pubs.acs.org/doi/abs/10.1021/ac103195e
    • 138. Qian X, Peng XH, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, et al. In vivo tumor targeting and spectroscopic detection with surfaceenhanced Raman nanoparticle tags. Nat Biotechnol 2008; 26: 83 90. Available from: http:// www.nature.com/nbt/journal/v26/n1/full/nbt1377.html
    • 139. Holmes JD, Johnston KP, Doty RC, Korgel BA. Control of thickness and orientation of solution-grown silicon nanowires. Science 2000; 287: 1471 3. Available from: http:// www.sciencemag.org/content/287/5457/1471.short
    • 140. Lieber CM. One-dimensional nanostructures: chemistry, physics & applications. Solid State Commun 1998; 107: 607 16. Available from: http://www.sciencedirect.com/science/article/ pii/S0038109898002099
    • 141. Jeyakumar Ramanujam, Shri D, Verma A. Silicon nanowire growth and properties: a review. Mater Express 2011; 1: 105 26. Available from: http://www.ingentaconnect.com/content/ asp/me/2011/00000001/00000002/art00002
    • 142. Stucky GD, MacDougall JE. Quantum confinement and host/ guest chemistry: probing a new dimension. Science 1990; 247: 669 78. Available from: http://www.sciencemag.org/content/ 247/4943/669.long
    • 143. Ramgir NS, Yang Y, Zacharias M. Nanowire-based sensors. Small 2010; 6: 1705 22. Available from: http://onlinelibrary. wiley.com/doi/10.1002/smll.201000972/abstract
    • 144. Lieber CM, Zheng GF, Patolsky F, Cui Y, Wang WU. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 2005; 23: 1294 301. Available from: http://www.nature.com/nbt/journal/v23/n10/full/nbt1138. html
    • 145. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 2005; 4: 435 46. Available from: http://www.nature.com/ nmat/journal/v4/n6/full/nmat1390.html
    • 146. Rosenthal SJ, Chang JC, Kovtun O, McBride JR, Tomlinson ID. Biocompatible quantum dots for biological applications. Chem Biol 2011; 18: 10 24. Available from: http://www.sciencedirect. com/science/article/pii/S1074552110004497
    • 147. Kippeny T, Swafford LA, Rosenthal SJ. Semiconductor nanocrystals: a powerful visual aid for introducing the particle in a box. J Chem Educ 2002; 79: 1094 100. Available from: http://pubs.acs.org/doi/abs/10.1021/ed079p1094
    • 148. Barroso MM. Quantum dots in cell biology. J Histochem Cytochem 2011; 59: 237 51. Available from: http://jhc.sagepub. com/content/59/3/237
    • 149. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T. Quantum dots versus organic dyes as fluorescent labels. Nat Methods 2008; 5: 763 75. Available from: http:// www.nature.com/nmeth/journal/v5/n9/full/nmeth.1248.html
    • 150. Barat B, Sirk SJ, McCabe KE, Li J, Lepin EJ, Remenyi R, et al. Cys-diabody quantum dot conjugates (immunoQdots) for cancer marker detection. Bioconjug Chem 2009; 20: 1474 81. Available from: http://pubs.acs.org/doi/abs/10.1021/bc800421f
    • 151. Yokota T, Milenic DE, Whitlow M, Schlom J. Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res 1992; 52: 3402 8. Available from: http://cancerres.aacrjournals.org/content/52/12/3402.long
    • 152. Mattheakis LC, Dias JM, Choi YJ, Gong J, Bruchez MP, Liu JQ, et al. Optical coding of mammalian cells using semiconductor quantum dots. Anal Biochem 2004; 327: 200 8. Available from: http://www.sciencedirect.com/science/ article/pii/S0003269704000764
    • 153. Saerens D, Kinne J, Bosmans E, Wernery U, Muyldermans S, Conrath K. Single domain antibodies derived from dromedary lymph node and peripheral blood lymphocytes sensing conformational variants of prostate-specific antigen. J Biol Chem 2004; 279: 51965 72. Available from: http://www.jbc.org/ content/279/50/51965.long
    • 154. Whitfield D, Zaman MB, Baral TN, Zhang JB, Yu K. Singledomain antibody functionalized CdSe/ZnS quantum dots for cellular imaging of cancer cells. J Phys Chem C 2009; 113: 496 9. Available from: http://pubs.acs.org/doi/abs/10.1021/ jp809159k
    • 155. Balalaeva IV, Zdobnova TA, Brilkina AA, Krutova IM, Stremovskiy OA, Lebedenko EN, et al. Whole-body imaging of HER2/neu-overexpressing tumors using scFv-antibody conjugated quantum dots. Proc SPIE 2010; 7575: 757510. Available from: http://spiedigitallibrary.org/proceedings/resource/ 2/psisdg/7575/1/757510_1?isAuthorized no
    • 156. Sauerbrey G. Verwendung von Schwingquarzen zur Wa¨gung du¨ nner Schichten und zur Mikrowa¨gung. Zeitschrift fu¨ r Physik 1959; 155: 206 22.
    • 157. Uludag Y, Tothill IE. Development of a sensitive detection method of cancer biomarkers in human serum (75%) using a quartz crystal microbalance sensor and nanoparticles amplification system. Talanta 2010; 82: 277 82. Available from: http:// www.sciencedirect.com/science/article/pii/S0039914010002912
    • 158. Shen Z, Mernaugh RL, Yan H, Yu L, Zhang Y, Zeng X. Engineered recombinant single-chain fragment variable antibody for immunosensors. Anal Chem 2005; 77: 6834 42. Available from: http://pubs.acs.org/doi/abs/10.1021/ac0507690
    • 159. Kroger D, Liley M, Schiweck W, Skerra A, Vogel H. Immobilization of histidine-tagged proteins on gold surfaces using chelator thioalkanes. Biosens Bioelectron 1999; 14: 155 61. Available from: http://www.sciencedirect.com/science/ article/pii/S095656639800116X
    • 160. Shen Z, Yan H, Parl FF, Mernaugh RL, Zeng X. Recombinant antibody piezoimmunosensors for the detection of cytochrome P450 1B1. Anal Chem 2007; 79: 1283 9. Available from: http:// pubs.acs.org/doi/abs/10.1021/ac061211a
    • 161. Dill K, Montgomery DD, Ghindilis AL, Schwarzkopf KR, Ragsdale SR, Oleinikov AV. Immunoassays based on electrochemical detection using microelectrode arrays. Biosens Bioelectron 2004; 20: 736 42. Available from: http://www.sciencedirect. com/science/article/pii/S0038109898002099
    • 162. Korri-Youssoufi H, Le HQA, Sauriat-Dorizon H. Investigation of SPR and electrochemical detection of antigen with polypyrrole functionalized by biotinylated single-chain antibody: a review. Anal Chim Acta 2010; 674: 1 8. Available from: http:// www.sciencedirect.com/science/article/pii/S0003267010007464
    • 163. Wang J. Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens Bioelectron 2006; 21: 1887 92. Available from: http://www.sciencedirect.com/science/article/ pii/S0956566305003441
    • 164. Oleinikov AV, Gray MD, Zhao J, Montgomery DD, Ghindills AL, Dill K. Self-assembling protein arrays using electronic semiconductor microchips and in vitro translation. J Proteome Res 2003; 2: 313 9. Available from: http://pubs.acs. org/doi/abs/10.1021/pr0300011
    • 165. Bailey RC, Kwong GA, Radu CG, Witte ON, Heath JR. DNA-encoded antibody libraries: a unified platform for multiplexed cell sorting and detection of genes and proteins. J Am Chem Soc 2007; 129: 1959 67. Available from: http://pubs.acs. org/doi/abs/10.1021/ja065930i
    • 166. Hwang KS, Lee SM, Kim SK, Lee JH, Kim TS. Micro- and nanocantilever devices and systems for biomolecule detection. Annu Rev Anal Chem (Palo Alto Calif) 2009; 2: 77 98. Available from: http://www.annualreviews.org/doi/full/10.1146/ annurev-anchem-060908-155232
    • 167. Burg TP, Mirza AR, Milovic N, Tsau CH, Popescu GA, Foster JS, et al. Vacuum-packaged suspended microchannel resonant mass sensor for biomolecular detection. J Microelectromech Syst 2006; 15: 1466 76. Available from: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp &arnumber 4020254&contentType Journals %26 Magazines&sortType% 3Dasc_p_Sequence%26filter%3DAND%28p_IS_Number%3A 4020250%29
    • 168. Wu G, Datar RH, Hansen KM, Thundat T, Cote RJ, Majumdar A. Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nat Biotechnol 2001; 19: 856 60. Available from: http://www.nature.com/nbt/journal/v19/n9/full/ nbt0901-856.html
    • 169. Kim TS, Lee JH, Hwang KS, Park J, Yoon KH, Yoon DS. Immunoassay of prostate-specific antigen (PSA) using resonant frequency shift of piezoelectric nanomechanical microcantilever. Biosens Bioelectron 2005; 20: 2157 62. Available from: http:// www.sciencedirect.com/science/article/pii/S0956566304004488
    • 170. Adams GP, Loo L, Capobianco JA, Wu W, Gao XT, Shih WY, et al. Highly sensitive detection of HER2 extracellular domain in the serum of breast cancer patients by piezoelectric microcantilevers. Anal Chem 2011; 83: 3392 7. Available from: http://pubs.acs.org/doi/abs/10.1021/ac103301r
    • 171. SRU Biosystems. Available from: http://www.srubiosystems. com/ [cited May 2012].
    • 172. Cunningham BT, Li P, Schulz S, Lin B, Baird C, Gerstenmaier J, et al. Label-free assays on the BIND system. J Biomol Screen 2004; 9: 481 90. Available from: http://jbx.sagepub.com/ content/9/6/481.long
    • 173. Huang CS, George S, Lu M, Chaudhery V, Tan RM, Zangar RC, et al. Application of photonic crystal enhanced fluorescence to cancer biomarker microarrays. Anal Chem 2011; 83: 1425 30. Available from: http://pubs.acs.org/doi/abs/10.1021/ ac102989n
    • 174. Chen R, Mias GI, Li-Pook-Than J, Jiang L, Lam HY, Miriami E, et al. Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 2012; 148: 1293 307. Available from: http://www.cell.com/fulltext/S0092-8674 (12)00166-3
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from