Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Holtegaard Nielsen, Morten; Reng Erbs-Hansen, Dorthe; Knudsen, Karen Luise (2010)
Publisher: Co-Action Publishing
Journal: Polar Research
Languages: English
Types: Article
The water masses in Kangerlussuaq (Søndre Strømfjord) in West Greenland were studied during both a summer and a winter field survey. In order to obtain an improved understanding of the relationship between the physical oceanography and modern foraminiferal assemblage distributions, conductivity–temperature–density measurements were carried out in connection with sediment surface sampling along a transect through the 180 km long fjord. The exchange between the inner part of Kangerlussuaq (275 m deep) and the ocean is restricted by an almost 100 km long outer, shallow part. Our study shows that the water mass in this inner part is almost decoupled from the open ocean, and that in winter the inner part of the fjord is ice covered and convection occurs as a result of brine release. These processes are reflected in the foraminiferal assemblage, which consists of a sparse agglutinated fauna, indicative of carbonate dissolution. A monospecific, calcareous assemblage (Elphidium excavatum forma clavata) occurs in the innermost, shallow part, which is strongly influenced by sediment-loaded meltwater during the summer. The outer, shallow part of the fjord is dominated by strong tidal mixing, and in summer the density of the incoming water does not exceed the bottom water density in the inner fjord. The foraminiferal assemblage here reflects high bottom water current velocity and an influence of water with relatively high salinity. Kangerlussuaq can be regarded as a modern analogue for ice-proximal environments in the Quaternary, with a strong seasonal forcing caused by freshwater run-off and sea-ice formation.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Allen G.L. & Simpson J.H. 2002. The response of a strongly stratified fjord to energetic tidal forcing. Estuarine, Coastal and Shelf Science 55, 629-644.
    • Alve E. 1999. Colonization of new habitats by benthic foraminifera: a review. Earth-Science Reviews 46, 167-185.
    • Andersen O.G.N. 1981. The annual cycle of temperature, salinity, currents and water masses in Disko Bugt and adjacent waters, West Greenland. Meddelelser om Grønland, Bioscience 5. Copenhagen: Commission for Scientific Research in Greenland.
    • Arneborg L. & Liljebladh B. 2001. The internal seiches in Gullmar Fjord. Part II: contribution to basin water mixing. Journal of Physical Oceanography 31, 2567-2574.
    • Barmawidjaja D.M., van der Zwaan G.J., Jorissen F.J. & Puskaric S. 1995. 150 years of eutrophication in the northern Adriatic Sea: evidence from a benthic foraminiferal record. Marine Geology 122, 367-384.
    • Bennike O., Hansen K.B., Knudsen K.L., Penney D.N. & Rasmussen K.L. 1994. Quaternary marine stratigraphy and geochronology in central West Greenland. Boreas 23, 194-215.
    • Brönnimann P. & Whittaker J.E. 1988. The Trochammina of the Discovery reports. London: British Museum (Natural History).
    • Buch E. 2000. Air-sea-ice conditions off southwest Greenland, 1981-1997. Journal of the Northwest Atlantic Fisheries Sciences 26, 123-136.
    • Buch E. 2002. Present oceanographic conditions in Greenland waters. Danish Meteorological Institute Scientific Report 02-02. Copenhagen: Danish Meterological Institute.
    • Dowdeswell J.A., Whittington R.J., Jennings A.E., Andrews J.T., Mackensen A. & Marienfeld P. 2000. An origin for laminated glacimarine sediments through sea-ice build-up and suppressed iceberg rafting. Sedimentology 47, 557-576.
    • Elverhøi A., Liestøl O. & Nagy J. 1980. Glacial erosion, sedimentation and microfauna in the inner part of Kongsfjord, Spitsbergen. Norsk Polarinstitutt Skrifter 172, 33-61.
    • Feyling-Hanssen R.W. 1990. Foraminiferal stratigraphy in the Plio-Pleistocene Kap København Formation, North Greenland. Meddelelser om Grønland, Geoscience 24. Copenhagen: Commission for Scientific Research in Greenland.
    • Feyling-Hanssen R.W. & Funder S. 1990. Fauna and flora. In S. Funder (ed.): Late Quaternary stratigraphy and glaciology in the Thule area, Northwest Greenland. Meddelelser om Grønland, Geoscience 22, 19-32.
    • Feyling-Hanssen R.W., Jørgensen J.A., Knudsen K.L. & Lykke-Andersen A.-L. 1971. Late Quaternary foraminifera from Vendsyssel, Denmark and Sandnes, Norway. Bulletin of the Geological Society of Denmark 21, 67-367.
    • Fischer H.B., List E.J., Koh R.C.Y., Imberger J. & Brooks N.H. 1979. Mixing in inland and coastal waters. New York: Academic Press.
    • Haarpaintner J., Gascard J.-C. & Haugan P.M. 2001. Ice production and brine formation in Storfjorden, Svalbard. Journal of Geophysical Research-Oceans 106, 14 001-14 013.
    • Hald M. & Korsun S. 1997. Distribution of modern benthic foraminifera from fjords of Svalbard, European Arctic. Journal of Foraminiferal Research 27, 101-122.
    • Hald M. & Steinsund P.I. 1996. Benthic foraminifera and carbonat dissolution in the surface sediments of the Barents and Kara seas. In R. Stein et al. (eds.): Surface-sediment composition and sedimentary processes in the central Arctic Ocean and along the Eurasian Continental Margin. Berichte zur Polarforschung 212, 285-307.
    • Hald M., Steinsund P.I., Dokken T., Korsun S., Polyak L. & Aspeli R. 1994. Recent and late Quarternary distribution of Elphidium excavatum f. clavata in Arctic seas. Cushman Foundation Special Publication 32, 141-153.
    • Hansen A. & Knudsen K.L. 1992. Recent foraminifera in Freemansundet, eastern Svalbard. Lundqua Report 35, 177-189.
    • Hansen A. & Knudsen K.L. 1995. Recent foraminiferal distribution in Freemansundet and Early Holocene stratigraphy on Edgeøya, Svalbard. Polar Research 14, 215-238.
    • Haynes J.R. 1973. Cardigan Bay recent foraminifera. Bulletin of the British Museum (Natural History) Zoology, Supplement 4. London: British Museum (Natural History).
    • Henriksen N., Higgins A.K., Kalsbeek F. & Pulvertaft T.C.R. 2000. Greenland from Archaean to Quaternary. Descriptive text to the Geological map of Greenland, 1 : 2 500 000. Geology of Greenland Survey Bulletin 185. Copenhagen: Geological Survey of Denmark and Greenland.
    • Hogg A.M., Ivey G.N. & Winters K.B. 2001. Hydraulics and mixing in controlled exchange flows. Journal of Geophysical Research-Oceans 106, 959-972.
    • Husum K. & Hald M. 2004. Modern foraminiferal distribution in the subarctic Malangen fjord and adjoining shelf, northern Norway. Journal of Foraminiferal Research 34, 34-48.
    • Jennings A.E. & Helgadóttir G. 1994. Foraminiferal assemblages from the fjords and shelf of eastern Greenland. Journal of Foraminiferal Research 24, 123-144.
    • Jennings A.E. & Weiner N.J. 1996. Environmental change in eastern Greenland during the last 1300 years: evidence from foraminifera and lithofacies in Nansen Fjord, 68°N. The Holocene 6, 179-191.
    • Kelly M., Funder S., Houmark-Nielsen M., Knudsen K.L., Kronborg C., Landvik J. & Sorby L. 1999. Quaternary glacial and marine environmental history of northwest Greenland: a review and reappraisal. Quaternary Science Reviews 18, 373-392.
    • Knudsen K.L. 1998. Foraminiferer i Kvartaer stratigrafi: laboratorie og fremstillingsteknik samt udvalgte eksempler. (Foraminifera in Quaternary stratigraphy: laboratory techniques and presentation as well as selected examples.) Geologisk Tidsskrift 3, 1-25.
    • Korsun S. & Hald M. 1998. Modern benthic foraminifera off Novaya Zemlya tidewater glaciers, Russian Arctic. Arctic and Alpine Research 30, 61-77.
    • Korsun S. & Hald M. 2000. Seasonal dynamics of benthic foraminifera in a glacially fed fjord of Svalbard, European Arctic. Journal of Foraminiferal Research 30, 251-271.
    • Lassen S.J., Kuijpers A., Kunzendorf H., Hoffmann-Wieck G., Mikkelsen N. & Konradi P. 2004. Late-Holocene Atlantic bottom-water variability in Igaliku Fjord, south Greenland, reconstructed from foraminifera faunas. The Holocene 14, 165-171.
    • Lloyd J.M. 2006a. Modern distribution of benthic foraminifera from Disko Bugt, west Greenland. Journal of Foraminiferal Research 36, 315-331.
    • Lloyd J.M. 2006b. Late Holocene environmental changes in Disko Bugt, West Greenland: interaction between climate, ocean circulation and Jakobshavn Isbrae. Boreas 35, 35-49.
    • Lloyd J.M., Park L.A., Kuijpers A. & Moros M. 2005. Early Holocene palaeoceanography and deglacial chronology of Disko Bugt, West Greenland. Quaternary Science Reviews 24, 1741-1755.
    • Madsen H.B. & Knudsen K.L. 1994. Recent foraminifera in shelf sediments of the Scoresby Sund fjord, East Greenland. Boreas 23, 495-504.
    • Matthews J.B. 1981. The seasonal circulation of the Glacier Bay, Alaska fjord system. Estuarine, Coastal and Shelf Science 12, 679-700.
    • Møller H.S., Jensen K.G., Kuijpers A., Aagaard-Sørensen S., Seidenkrantz M.-S., Prins M., Endler R. & Mikkelsen N. 2006. Late-Holocene environment and climatic changes in Ameralik Fjord, southwest Greenland: evidence from the sedimentary record. The Holocene 16, 685-695.
    • Mudie P.J., Keen C.E., Hardy I.A. & Vilks G. 1983. Multivariate analysis and quantitative paleocology of benthic foraminifera in surface and Late Quaternary shelf sediments, northern Canada. Marine Micropaleontology 8, 283-313.
    • Murray J.W. 1973. Distribution and ecology of living benthic foraminiferids. London: Heinemann.
    • Murray J.W. 1991. Ecology and palaeoecology of benthic foraminifera. Harlow: Longman Scientific and Technical.
    • Murray J.W. 2006. Ecology and application of benthic foraminifera. Cambridge: Cambridge University Press.
    • Murray J.W. & Bowser S.S. 2000. Mortality, protoplasm decay rate and reliability of staining technique to recognize “living foraminifera”: a review. Journal of Foraminiferal Research 30, 66-70.
    • Niebauer H.J., Royer T.C. & Weingartner T.J. 1994. Circulation of Prince William Sound, Alaska. Journal of Geophysical Research-Oceans 99, 14 113-14 126.
    • Nielsen M.H., Rasmussen B. & Gertz F., 2005. A simple model for water level and stratification in Ringkøbing Fjord, a shallow, artificial estuary. Estuarine, Coastal and Shelf Science 63, 235-248.
    • Polyak L., Korsun S., Febo L.A., Stanovoy V., Khusid T., Hald M., Paulsen B.E. & Lubinski D.J. 2002. Benthic foraminiferal assemblages from the southern Kara Sea, a river-influenced Arctic marine environment. Journal of Foraminiferal Research 32, 252-273.
    • Rysgaard S., Glud R.N., Sejr M.K., Bendtsen J. & Christensen P.B. 2007. Inorganic carbon transport during sea ice growth and decay: a carbon pump in polar seas. Journal of Geophysical Research-Oceans 112, C03016, doi: 10.1029/ 2006JC003572.
    • Rysgaard S., Vang T., Stjernholm M., Rasmussen B., Windelin A. & Kiilsholm S. 2003. Physical conditions, carbon transport, and climate change impacts in a northeast Greenland Fjord. Arctic, Antarctic, and Alpine Research 35, 301-312.
    • Schröder-Adams C.J., Cole F.E., Medioli F.S., Mudie P.J., Scott, D.B. & Dobbin L. 1990. Recent Arctic shelf foraminifera: seasonally ice covered vs. perennially ice covered areas. Journal of Foraminiferal Research 20, 8-36.
    • Scott D.B., Schafer C.T. & Medioli F.S. 1980. Eastern Canadian estuarine foraminifera: a framework for comparison. Journal of Foraminiferal Research 10, 205-234.
    • Seidenkrantz M.-S., Aagaard-Sørensen S., Møller H.S., Kuijpers A., Jensen K.G. & Kunzendorf H. 2007: Hydrography and climate change during the last 4,400 years in Ameralik Fjord, SW Greenland-implications for Labrador Sea palaeoceanography. The Holocene 17, 1-15.
    • Skogseth R., Haugan P.M. & Jakobsson M. 2005. Watermass transformations in Storfjorden. Continental Shelf Research 25, 667-695.
    • Steinsund P.I. & Hald M. 1994. Recent calcium carbonate dissolution in the Barents Sea: paleoceanographic applications. Marine Geology 117, 303-316.
    • Tsujimoto A., Yasuhara M., Nomura R., Yamazaki H., Sampei Y. Hirose K. & Yoshokawa S. 2008. Development of modern benthic ecosystems in eutrophic coastal oceans: the foraminiferal record over the last 200 years, Osaka Bay, Japan. Marine Micropaleontology 69, 225-239.
    • UNESCO (United Nations Educational, Scientific and Cultural Organization) 1981. International oceanographic tables. Vol. 3. UNESCO Technical Papers in Marine Science 39. Paris: UNESCO.
    • Vilks G. 1969. Recent foraminifera in the Canadian Arctic. Micropaleontology 15, 35-60.
    • Vilks G. 1989. Ecology of recent foraminifera on the Canadian continental shelf of the Arctic Ocean. In Y. Herman (ed.): The Arctic seas, climatology, oceanography, geology, and biology. Pp. 497-569. New York: Van Nostrand Reinhold Company.
    • Vilks G. & Deonarine B. 1988. Labrador shelf benthic foraminifera and stable oxygen isotopes of Cibicides lobatulus related to the Labrador Current. Canadian Journal of Earth Sciences 25, 1240-1255.
    • Vosgerau H., Funder S., Kelly M., Knudsen K.L., Kronborg C., Madsen H.B. & Sejrup H.-P. 1994: Palaeoenvironment and changes in the relative sea level during the last interglacial, Langelandselv area, Jameson Land, East Greenland. Boreas 23, 398-411.
    • Wollenburg J.E., Knies J. & Mackensen A. 2004. High-resolution paleoproductivity fluctuations during the past 24 kyr as indicated by benthic foraminifera in the marginal Arctic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology 204, 209-238.
    • Wollenburg J.E. & Mackensen A. 1998. Living benthic foraminifera from the central Arctic Ocean: faunal composition, standing stock and diversity. Marine Micropaleontology 34, 153-185.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article

Collected from