Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Blum, U.; Fricke, K. H.; Müller, K. P.; Siebert, J.; Baumgarten, G. (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Polar stratospheric clouds (PSCs) play a key role in the depletion of polar ozone. The type of cloud and the length of time for which it exists are crucial for the amount of chlorine activation during the polar night. The Bonn University backscatter lidar at Esrange in northern Sweden (68°N, 21°E) is well equipped for long-term observation and classification of these clouds. Nearly continuous measurements through several winters are rare, in particular in wave-active regions like Esrange. Lidar measurements have been performed each winter since 1997—a total of more than 2000 h of observation time has been accumulated, including more than 300 h with PSCs. Analysis of this unique data set leads to a classification scheme with four different scattering characteristics which can be associated with four different cloud types: (1) supercooled ternary solution (STS), (2) nitric acid trihydrate (NAT), (3) ice and (4) mixtures of solid and liquid particles. The analysis of observations over seven winters gives an overview of the frequency of appearance of the individual PSC types. Most of the clouds contain layers of different PSC types. The analysis of these layers shows STS and mixed clouds to occur most frequently, with more than 39% and 37% of all PSC observations, respectively, whereas NAT (15%) and ice clouds (9%) are seen only rarely. The lidar is located close to the Scandinavian mountain ridge, which is a major source of orographically induced gravity waves that can rapidly cool the atmosphere below cloud formation temperatures. Comparing the individual existence temperature of the observed cloud type with the synoptic-scale temperature provided by the European Centre for Medium-range Weather Forecasts (ECMWF) gives information on the frequency of synoptically and wave-induced PSCs. Further, the analysis of ECMWF temperature and wind data gives an estimate of the transparency of the atmosphere to stationary gravity waves. During more than 80% of all PSC observations in synoptic-scale temperatures which were too warm the atmosphere was transparent for stationary gravity waves. Our measurements show that dynamically induced cooling is crucial for the existence of PSCs above Esrange. In particular ice PSCs are observed only in situations where there are gravity waves.DOI: 10.1111/j.1600-0889.2005.00161.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Biele, J., Beyerle, G. and Baumgarten, G. 2000. Polarization lidar: corrections of instrumental effects. Opt. Express 7, 427-435.
    • Biele, J., Tsias, A., Luo, B. P., Carslaw, K. S., Neuber, R. and co-authors 2001. Nonequilibrium coexistence of solid and liquid particles in Arctic stratospheric clouds. J. Geophys. Res. 106, 22 991-23 007.
    • Blum, U. 2003. Lidarbeobachtungen der Polaren Atmospha¨re: Wolken und Wellen-Pha¨nomene und Mechanismen. PhD Thesis BONN-IR2003-11. Universita¨t Bonn, Bonn.
    • Blum, U. and Fricke, K. H. 2005. The Bonn University Lidar at the Esrange: technical description and capabilities for atmospheric research. Ann. Geophys. 23, 1645-1658.
    • Blum, U., Fricke, K. H., Baumgarten, G. and Scho¨ch, A. 2004. Simultaneous lidar observations of temperatures and waves in the polar middle atmosphere on the east and west side of the Scandinavian mountains: a case study on 19/20 January 2003. Atmos. Chem. Phys. 4, 809-816.
    • Browell, E. V., Butler, C. F., Ismail, S., Robinette, P. A., Carter, A. F. and co-authors 1990. Airborne lidar observations in the wintertime Arctic stratosphere: polar stratospheric clouds. Geophys. Res. Lett. 17, 385-388.
    • Carslaw, K. S., Kettleborough, J. A., Northway, M. J., Davies, S., Gao, R.-S. and co-authors 2002. A vortex-scale simulation of the growth and sedimentation of large nitric acid hydrate particles. J. Geophys. Res. 107, doi:10.1029/2001JD000467.
    • Carslaw, K. S., Wirth, M., Tsias, A., Luo, B. P., Do¨rnbrack, A. and co-authors 1998a. Particle microphysics and chemistry in remotely observed mountain polar stratospheric clouds. J. Geophys. Res. 103, 5785-5796.
    • Carslaw, K. S., Wirth, M., Tsias, A., Luo, B. P., Do¨rnbrack, A. and co-authors 1998b. Increased stratospheric ozone depletion due to mountain-induced atmospheric waves. Nature 391, 675-678.
    • Crutzen, P. and Arnold, F. 1986. Nitric acid cloud formation in the cold Antarctic stratosphere: a major cause for springtime 'ozone hole'. Nature 324, 651-655.
    • Deshler, T., Larsen, N., Weissner, C., Schreiner, J., Mauersberger, K. and co-authors 2003. Large nitric acid particles at the top of an Arctic stratospheric cloud. J. Geophys. Res. 108, doi:10.1029/ 2003JD003479.
    • di Sarra, A., Cacciani, M., Fiocco, G., Fua`, D. and Jørgensen, T. S. 2002. Lidar observations of polar stratospheric clouds over northern Greenland in the period 1990-1997. J. Geophys. Res. 107, doi:10.1029/ 2001JD001074.
    • Do¨rnbrack, A., Birner, T., Fix, A., Flentje, H., Meister, A. and co-authors 2002. Evidence for inertia gravity waves forming polar stratospheric clouds over Scandinavia. J. Geophys. Res. 107, doi:10.1029/2001JD000452.
    • Do¨rnbrack, A. and Leutbecher, M. 2001. Relevance of mountain waves for the formation of polar stratospheric clouds over Scandinavia: a 20 year climatology. J. Geophys. Res. 106, 1583-1593.
    • Drdla, K. and Browell, E. V. 2004. Microphysical modelling of the 1999- 2000 arctic winter: 3. Impact of homogeneous freezing on polar stratospheric clouds. J. Geophys. Res. 109, doi:10.1029/2003JD0004352.
    • Fahey, D. W., Gao, F. S., Carslow, K. S., Kletteborough, J., Popp, P. J. and co-authors 2001. The detection of large HNO3-containing particles in the winter arctic stratosphere. Science 291, 1026-1031.
    • Fritts, D. C., 1984. Gravity wave saturation in the middle atmosphere: a review of theory and observations. Rev. Geophys. 22(3), 275-308.
    • Fromm, M., Alfred, J. and Pitts, M. 2003. A unified. longterm, high-latitude stratospheric aerosol and cloud database using SAM II, SAGE II, and POAM II/III data: algorithm description, database definition, and climatology. J. Geophys. Res. 108, 4366, doi:10.1029/2002JD002772.
    • Gille, J. C., Bailey, P. L. and Craig, C. A. 1996. Revised reference model for nitric acid. Adv. Space Res. 18(9/10), 125-138.
    • Hanson, D. and Mauersberger, K. 1988. Laboratory studies of the nitric acid trihydrate: implications for the south polar stratosphere. Geophys. Res. Lett. 15, 855-858.
    • Ho¨pfner, M., Stiller, G., von Claremann, T., Fischer, H., Luo, B. and co-authors 2005. Evidence for β-NAT in MIPAS mid-infrared limb emission spectra of PSCs by new refractive index data. Geophys. Res. Abstr. 7, 08 395.
    • Labitzke, K. and Naujokat, B. 2000. The lower Arctic stratosphere in winter since 1952. SPARC Newsletter 15, 11-14.
    • Labitzke, K., Naujokat, B. and Kunze, M. 2005. The lower Arctic stratosphere in winter since 1952: an update. SPARC Newsletter 24, 27-28.
    • Luo, B. P., Voigt, C., Flueglistaler, S. and Peter, T. 2003. Extreme NAT supersaturation in mountain wave ice PSCs: a clue to NAT formation. J. Geophys. Res. 108, doi:10.1029/2002JD003104.
    • MacKenzie, A. R. 1995. On the theories of type 1 polar stratospheric cloud formation. J. Geophys. Res. 100, 11 275-11 288.
    • McCormick, M. P., Steel, H. M., Hamill, P., Chu, W. P. and Swissler, T. J. 1982. Polar stratospheric cloud sightings by SAM II. J. Atmos. Sci. 39, 1387-1397.
    • Mu¨ller, K.-P., Langer, M., Ro¨mke, K. and Fricke, K. H. 1995. PSCs and Aerosol Above Andøya during Sesame Winters 1993/94 and 1994/95. Air Pollution Report 56. European Commission, Luxembourg, 122- 125.
    • Mu¨ller, M., Neuber, R., Massoli, P., Cairo, F., Adriani, A. and co-authors 2004. Differences in Arctic and Antarctic PSC occurrence as observed by lidar in Ny-Ålesund (79◦N, 12◦E) and McMurdo (78◦S, 167◦E). Atmos. Chem. Phys. Discuss. 4, 6837-6866.
    • Murray, F. W. 1967. On the computation of saturation vapor pressure. J. Appl. Meteorol. 6, 203-204.
    • Naujokat, B. and Grunow, K. 2003. The stratospheric Arctic winter 2002/03: balloon flight planning by trajectory calculations. Proceedings of the 16th ESA Symposium on European Rocket and Balloon Programmes and Related Research, St Gallen, Switzerland, 2003, ESA-SP-530, ESA Publication Division, Noordwijk, The Netherlands, 421-425.
    • Naujokat, B., Kru¨ger, K., Matthes, K., Hoffmann, J., Kunze, M. and co-author 2002. The early major warming in December 2001-exceptional? Geophys. Res. Lett. 29, 2023, doi:10.1029/ 2002GL015316.
    • Peter, T. 1997. Microphysics and heterogeneous chemistry of polar stratospheric clouds. Ann. Rev. Phys. Chem. 48, 785-822.
    • Pool, L. R. and McCormick, M. P. 1988. Airborne lidar observations of Arctic polar stratospheric clouds: indications of two distinct growth stages. Geophys. Res. Lett. 15, 21-23.
    • Pool, L. R. and Pitts, M. C. 1994. Polar stratospheric cloud climatology based on Stratospheric Aerosol Measurements II observations from 1978 to 1989. J. Geophys. Res. 99, 13 083-13 089.
    • Santacesaria, V., MacKenzie, A. R. and Stefanutti, L. 2001. A climatological study of polar stratospheric clouds (1989-1997) from lidar measurements over Dumont d'Urville (Antarctica). Tellus 53B, 306- 321.
    • Siebert, J., Timmis, C., Vaughan, G. and Fricke, K. H. 2000. A strange cloud in the Arctic summer stratosphere 1998 above Esrange (68◦N), Sweden. Ann. Geophys. 18, 505-509.
    • Solomon, S. 1999. Stratospheric ozone depletion: a review of concepts and history. Rev. Geophys. 37, 275-316.
    • Spang, R., Riese, M. and Offermann, D. 2001. CRISTA-2 observations of the south polar vortex in winter 1997: a new dataset for polar process studies. Geophys. Res. Lett. 28, 3159-3162.
    • Steel, H. M., Hamill, P., McCormick, M. P. and Swissler, T. J. 1983. The formation of polar stratospheric clouds. J. Atmos. Sci. 40, 2055- 2067.
    • Stein, B., Wedekind, C., Wille, H., Immler, F., Mu¨ller, M. and co-authors 1999. Optical classification, existence temperatures, and coexistence of different polar stratospheric cloud types. J. Geophys. Res. 104, 23 983-23 993.
    • Størmer, C., 1929. Remarkable clouds at high altitudes. Nature 123, 260-261.
    • Tabazadeh, A. and Toon, O. B. 1996. The presence of metastable HNO3/H2O solid phase in the stratosphere inferred from ER 2 data. J. Geophys. Res. 101, 9071-9078.
    • Toon, O. B., Hamill, P., Turco, R. P. and Pinto, J. 1986. Condensation of HNO3 and HCl in the winter polar stratospheres. Geophys. Res. Lett. 13, 1284-1287.
    • Toon, O. B., Tabazadeh, A., Browell, E. V. and Jordan, J. 2000. Analysis of lidar observations of Arctic polar stratospheric clouds during January 1989. J. Geophys. Res. 105, 20 589-20 615.
    • Toon, O. B. and Tolbert, M. A. 1995. Spectroscopic evidence against nitric acid trihydrate in polar stratospheric clouds. Nature 375, 218- 221.
    • Tsias, A., Wirth, M., Carslaw, K. S., Biele, J., Mehrtens, H. and co-authors 1999. Aircraft lidar observations of an enhanced type Ia polar stratospheric clouds during APE-POLECAT. J. Geophys. Res. 104, 23 961-23 969.
    • Voigt, C., Schreiner, J., Kohlmann, A., Zink, P., Mauersberger, K. and co-authors 2000. Nitric acid trihydrate (NAT) in polar stratospheric clouds. Science 290, 1756-1758.
    • Volkert, H. and Intes, D. 1992. Orographically forced stratospheric waves over northern Scandinavia. Geophys. Res. Lett. 19, 1205-1208.
    • Young, A. T., 1980. Revised depolarization corrections for atmospheric extinction. Appl. Optics 19, 3427-3428.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from