Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Olsen, Ingar; Singhrao, Sim K. (2015)
Publisher: Co-Action Publishing
Journal: Journal of Oral Microbiology
Languages: English
Types: Article
Subjects: Alzheimer’s disease; pathogenesis; microorganisms; oral bacteria; direct cause
Alzheimer’s disease (AD) is a scourge of longevity that will drain enormous resources from public health budgets in the future. Currently, there is no diagnostic biomarker and/or treatment for this most common form of dementia in humans. AD can be of early familial-onset or sporadic with a late-onset. Apart from the two main hallmarks, amyloid-beta and neurofibrillary tangles, inflammation is a characteristic feature of AD neuropathology. Inflammation may be caused by a local central nervous system insult and/or by peripheral infections. Numerous microorganisms are suspected in AD brains ranging from bacteria (mainly oral and non-oral Treponema species), viruses (herpes simplex type I), and yeasts (Candida species). A causal relationship between periodontal pathogens and non-oral Treponema species of bacteria has been proposed via the amyloid-beta and inflammatory links. Periodontitis constitutes a peripheral oral infection that can provide the brain with intact bacteria and virulence factors and inflammatory mediators due to daily, transient bacteremias. If and when genetic risk factors meet environmental risk factors in the brain, disease is expressed, in which neurocognition may be impacted, leading to the development of dementia. To achieve the goal of finding a diagnostic biomarker and possible prophylactic treatment for AD, there is an initial need to solve the etiological puzzle contributing to its pathogenesis. This review therefore addresses oral infection as the plausible etiology of late-onset AD (LOAD).Keywords: Alzheimer’s disease; pathogenesis; microorganisms; oral bacteria; direct cause(Published: 17 September 2015)Citation: Journal of Oral Microbiology 2015, 7: 29143 - http://dx.doi.org/10.3402/jom.v7.29143
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Balin BJ, Hudson AP. Etiology and pathogenesis of late-onset Alzheimer's disease. Curr Allergy Asthma Rep 2014; 14: 417. doi: http://dx.doi.org/10.1007/s11882-013-0417-1
    • 2. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 1993; 261: 921 3.
    • 3. Holmes C, El-Okl M, Williams AL, Cunningham C, Wilcockson D, Perry VH. Systemic infection, interleukin 1 beta, and cognitive decline in Alzheimer's disease. J Neurol Neurosurg Psychiatry 2003; 74: 788 9.
    • 4. Dunn N, Mullee M, Perry VH, Holmes C. Association between dementia and infectious disease: evidence from a case-control study. Alzheimer Dis Assoc Discord 2005; 19: 91 4.
    • 5. Riviere GR, Riviere KH, Smith KS. Molecular and immunological evidence of oral Treponema in the human brain and their association with Alzheimer's disease. Oral Microbiol Immunol 2002; 17: 113 18.
    • 6. Stein PS, Desrosiers M, Donegan SJ, Yepes JF, Kryscio RJ. Tooth loss, dementia and neuropathy in the NUN study. J Am Dent Assoc 2007; 138: 1314 22; quiz 1381 2.
    • 7. Kamer AR, Craig RG, Pirraglia E, Dasanayake AP, Norman RG, Boylan RJ, et al. TNF-a and antibodies to periodontal bacteria discriminate between Alzheimer's disease patients and normal subjects. J Neuroimmunol 2009; 216: 92 7.
    • 8. Poole S, Singhrao SK, Kesavalu L, Curtis MA, Crean S. Determining the presence of periodontopathic virulence factors in short-term postmortem Alzheimer's disease brain tissue. J Alzheimers Dis 2013; 36: 665 77. doi: http://dx.doi.org/10. 3233/JAD-121918
    • 9. Balin BJ, Little CS, Hammond CJ, Appelt DM, WhittumHudson JA, Ge´rard HC, et al. Chlamydophila penumoniae and the etiology of late-onset Alzheimer's disease. J Alzheimers Dis 2008; 13: 371 80.
    • 10. Itzhaki RF, Wozniak MA. Herpes simplex virus type 1 in Alzheimer's disease: the enemy within. J Alzheimers Dis 2008; 13: 393 405.
    • 11. Miklossy J. Chronic inflammation and amyloidogenesis in Alzheimer's disease role of spirochetes. J Alzheimers Dis 2008; 13: 381 91.
    • 12. Kamer AR, Dasanayake AP, Craig RG, Glodzik-Sobanska L, Bry M, de Leon MJ. Alzheimer's disease and peripheral infections: the possible contribution from periodontal infections, model and hypothesis. J Alzheimers Dis 2008; 13: 437 49.
    • 13. Watts A, Crimmins EM, Gatz M. Inflammation as a potential mediator for the association between periodontal disease and Alzheimer's disease. Neuropsychiatr Dis Treat 2008; 4: 865 76.
    • 14. Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer's disease. Alzheimers Dement 2007; 3: 186 91.
    • 15. Ouerfurth HW, LaFerla FM. Alzheimer's disease. N Engl J Med 2010; 362: 329 44.
    • 16. Shoemark DK, Allen SJ. The microbiome and disease: reviewing the links between the oral microbiome, aging and Alzheimer's disease. J Alzheimers Dis 2015; 43: 725 38.
    • 17. Alzheimer A. U¨ ber eine eigenartige Erkrankung der Hirnrinde. All Z Psychiat 1907; 64: 146 8.
    • 18. Selkoe DJ. Alzheimer's disease. Cold Spring Harb Perspect Biol 2011; 2011: 3. doi: http://dx.doi.org/10.1101/cshperspect. a004457
    • 19. Yankner BA, Dawes LR, Fisher S, Villa-Komaroff L, Oster-Granite ML, Neve RL. Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer's disease. Science 1989; 245: 417 20.
    • 20. Deshpande A, Mina E, Glabe C, Busciglio J. Different conformations of amyloid beta induce neurotoxicity by distinct mechanisms in human cortical neurons. J Neurosci 2006; 26: 6011 18.
    • 21. Glabe CC. Amyloid accumulation and pathogenesis of Alzheimer's disease: significance of monomeric, oligomeric and fibrillar Abeta. Subcell Biochem 2005; 38: 167 77.
    • 22. Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, et al. Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat Med 2008; 14: 837 42. doi: http://dx.doi.org/10. 1038/nm1782
    • 23. Soscia SJ, Kirby JE, Washicosky KJ, Tucker SM, Ingelsson M, Hyman B, et al. The Alzheimer's disease-associated amyloid beta-protein is an antimicrobial peptide. PLoS One 2010; 5: e9505. doi: http://dx.doi.org/10.1371/journal.pone.0009505
    • 24. Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, et al. Inflammation and Alzheimer's disease. Neurobiol Aging 2000; 21: 383 421.
    • 25. Perry VH, Nicoll JA, Holmes C. Microglia in neurodegenerative disease. Nat Rev Neurol 2010; 6: 193 201. http://dx.doi. org/10.1038/nrneurol.2010.17
    • 26. Hanisch UK. Microglia as a source and target of cytokines. Glia 2002; 40: 140 55.
    • 27. Lacroix S, Feinstein D, Rivest S. The bacterial endotoxin lipopolysaccharide has the ability to target the brain in upregulating its membrane CD14 receptor within specific cellular populations. Brain Pathol 1998; 8: 625 40.
    • 28. Laflamme N, Rivest S. Toll-like receptor 4: the missing link of the cerebral innate immune response triggered by circulating Gram-negative bacterial cell wall components. FASEB J 2001; 15: 155 63.
    • 29. Beutler B, Hoebe K, Du X, Ulevitch RJ. How we detect microbes and respond to them: the toll-like receptors and their transducers. J Leukoc Biol 2003; 74: 479 85.
    • 30. Rivest S. Regulation of innate immune responses in the brain. Nat Rev Immunol 2009; 9: 429 39. doi: http://dx.doi.org/10. 1038/nri2565
    • 31. Iqbal K, Grue-Iqbal I. Ubiquitination and abnormal phosphorylation of paired helical filaments in Alzheimer's disease. Mol Neurobiol 1991; 5: 399 410.
    • 32. Malpass K. Alzheimer disease: functional dissection of CD33 locus implicates innate immune response in Alzheimer disease pathology. Nat Rev Neurol 2013; 9: 360. doi: http://dx. doi.org/10.1038/nrneurol.2013.119
    • 33. Shulman JM, Chen K, Keenan BT, Chibnik LB, Fleisher A, Thiyyagura P, et al. Genetic susceptibility for Alzheimer disease neuritic plaque pathology. JAMA Neurol 2013; 70: 1150 7. doi: http://dx.doi.org/10.1001/jamaneurol.2013.2815
    • 34. Guerreiro RJ, Hardy J. Alzheimer's disease genetics: lessons to improve disease modelling. Biochem Soc Trans 2011; 39: 910 16. doi: http://dx.doi.org/10.1042/BST0390910
    • 35. Terry RD. Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 1991; 30: 572 80.
    • 36. Masliah E, Mallory M, Hansen L, Alford M, Albright T, DeTeresa R, et al. Patterns of aberrant sprouting in Alzheimer's disease. Neuron 1991; 6: 729 39.
    • 37. Masliah E, Mallory M, Hansen L, DeTeresa R, Terry RD. Quantitative synaptic alterations in the human neocortex during normal aging. Neurology 1993; 43: 192 7.
    • 38. Kondo K, Niino M, Shido K. A case-control study of Alzheimer's disease in Japan significance of life-styles. Dementia 1994; 5: 314 26.
    • 39. Bartus RT, Dean RL 3rd, Beer B, Lippa AS. The cholinergic hypothesis of geriatric memory dysfunction. Science 1982; 217: 408 14.
    • 40. Demetrius LA, Magistretti PJ, Pellerin L. Alzheimer's disease: the amyloid hypothesis and the Inverse Warburg effect. Front Physiol 2015; 5: 522. doi: http://dx.doi.org/10.3389/fphys. 2014.00522
    • 41. Tanzi RE, Watkins PC, Stewart GD, Wexler NS, Gusella JF, Haines JL. A genetic linkage map of human chromosome 21: analysis of recombination as a function of sex and age. Am J Hum Genet 1992; 50: 551 8.
    • 42. Scheuner D, Eckman C, Jensen M, Song X, Citron M, Suzuki N, et al. Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nat Med 1996; 2: 864 70.
    • 43. Glenner GG, Wong CW. Alzheimer's disease and Down's syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun 1984; 122: 1131 5.
    • 44. Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nat Genet 2009; 41: 1094 9. doi: http://dx.doi.org/10.1038/ng.439
    • 45. Thambisetty M, An Y, Nalls M, Sojkova J, Swaminathan S, Zhou Y, et al. Effect of complement CR1 on brain amyloid burden during aging and its modification by APOE genotype. Biol Psychiatry 2013; 73: 422 8. doi: http://dx.doi.org/10. 1016/j.biopsych.2012.08.015
    • 46. Killick R, Hughes TR, Morgan BP, Lovestone S. Deletion of Crry, the murine ortholog of the sporadic Alzheimer's disease risk gene CR1, impacts tau phosphorylation and brain CFH. Neurosci Lett 2013; 533: 96 9. doi: http://dx.doi.org/10.1016/ j.neulet.2012.11.008
    • 47. Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, et al. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol 2010; 9: 119 28. doi: http://dx.doi.org/10.1016/S1474-4422(09) 70299-6
    • 48. Morgan BP, Gasque P. Expression of complement in the brain: role in health and disease. Immunol Today 1996; 17: 461 6.
    • 49. Benveniste EN. Cytokine actions in the central nervous system. Cytokine Growth Factor Rev 1998; 9: 259 75.
    • 50. Gasque P. Complement: a unique innate immune sensor for danger signals. Mol Immunol 2004; 41: 1089 98.
    • 51. Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nat Genet 2009; 41: 1088 93. doi: http://dx.doi.org/ 10.1038/ng.440. Erratum in: Nat Genet 2009; 41: 1156. Nat Genet 2013; 45: 712. Haun, Reinhard [added].
    • 52. Eikelenboom P, Stam FC. Immunoglobulins and complement factors in senile plaques. An immunoperoxidase study. Acta Neuropathol 1982; 57: 239 42.
    • 53. McGeer PL, Akiyama H, Itagaki S, McGeer EG. Activation of the classical complement pathway in brain tissue of Alzheimer patients. Neurosci Lett 1989; 107: 341 6.
    • 54. Rogers J, Cooper NR, Webster S, Schultz J, McGeer PL, Styren SD, et al. Complement activation by beta-amyloid in Alzheimer disease. Proc Natl Acad Sci USA 1992; 89: 10016 20.
    • 55. Shen Y, Lue L, Yang L, Roher A, Kuo Y, Strohmeyer R, et al. Complement activation by neurofibrillary tangles in Alzheimer's disease. Neurosci Lett 2001; 305: 165 8.
    • 56. Oldfield BJ, Mckinley MJ. Circumventricular organs. In: Paxinos G, ed. The rat nervous system. San Diego: Academic Press; 1995. p. 391 403.
    • 57. Holmes C, Cunningham C, Zotova E, Woolford J, Dean C, Kerr S, et al. Systemic inflammation and disease progression in Alzheimer disease. Neurology 2009; 73: 768 74. doi: http://dx. doi.org/10.1212/WNL.0b013e3181b6bb95
    • 58. de Oliveira JM, Lisboa Lde B. Hospital-acquired infections due to Gram-negative bacteria. N Engl J Med 2010; 363: 1482 3; author reply 1483 4.
    • 59. Honjo K, van Reekum R, Verhoeff NPLG. Alzheimer's disease and infection: do infectious agents contribute to progression of Alzheimer's disease? Alzheimers Dement 2009; 5: 348 60. doi: http://dx.doi.org/10.1016/j.jalz.2008.12.001
    • 60. Maheshwari P, Eslick GD. Bacterial infection and Alzheimer's disease: a meta-analysis. J Alzheimers Dis 2015; 43: 957 66.
    • 61. Shima K, Kuhlenba¨umer G, Rupp J. Chlamydia pneumoniaeinfection and Alzheimer's disease: a connection to remember? Med Microbiol Immunol 2010; 199: 283 9. doi: http://dx.doi. org/10.1007/s00430-010-0162-1
    • 62. Lim C, Hammond CJ, Hingley ST, Balin BJ. Chlamydia pneumoniae infection of monocytes in vitro stimulates innate and adaptive immune responses relevant to those in Alzheimer's disease. J Neuroinflammation 2014; 11: 217. doi: http://dx.doi. org/10.1186/s12974-014-0217-0
    • 63. Hammond CJ, Hallock LR, Howanski RJ, Appelt DM, Little CS. Immunohistological detection of Chlamydia pneumoniae in the Alzheimer's disease brain. Neuroscience 2010; 11: 121.
    • 64. Hogan RJ, Mathews SA, Mukhopadhyay S, Summersgill JT, Timms P. Chlamydial persistence: beyond the biphasic paradigm. Infect Immun 2004; 72: 1843 55.
    • 65. Whittum-Hudson JA, Schumacher HR, Hudson AP. Chlamydia pneumoniae and inflammatory arthritis. In: Yamamoto Y, Friedman H, Bendinelli M, eds. Chlamydia pneumoniae infection and diseases. New York: Kluwer/ Academic Press; 2004. p. 227 38.
    • 66. Dreses-Werringloer U, Bhuiyan M, Zhao Y, Ge´rard HC, Whittum-Hudson JA, Hudson AP. Initial characterization of Chlamydophila (Chlamydia) pneumoniae cultured from the late-onset Alzheimer brain. Int J Med Microbiol 2009; 299: 187 201.
    • 67. Dezfulian M, Shokrgozar MA, Sardari S, Parivar K, Javadi G. Can phages cause Alzheimer's disease? Med Hypotheses 2008; 71: 651 6. doi: http://dx.doi.org/10.1016/j.mehy.2008.07.005
    • 68. Miklossy J. Alzheimer's disease a neurospirochetosis. Analysis of the evidence following Koch's and Hill's criteria. J Neuroinflammation 2011; 8: 90. doi: http://dx.doi.org/10. 1186/1742-2094-8-90
    • 69. Miklossy J. Emerging roles of pathogens in Alzheimer disease. Expert Rev Mol Med 2011; 13: e30. doi: http://dx.doi.org/10. 1017/S1462399411002006
    • 70. Ohnishi S, Koide A, Koide S. Solution conformation and amyloid-like fibril formation of a polar peptide derived from a beta-hairpin in the OspA single-layer beta-sheet. J Mol Biol 2000; 301: 477 89.
    • 71. McGeer PL, McGeer EG. Polymorphisms in inflammatory genes and the risk of Alzheimer disease. Arch Neurol 2001; 58: 1790 2.
    • 72. Miklossy J. Historic evidence to support a causal relationship between spirochetal infections and Alzheimer's disease. Front Aging Neurosci 2015; 7: 46. doi: http://dx.doi.org/10.3389/ fnagi.2015.00046
    • 73. Fallon BA, Nields JA. Lyme disease: a neuropsychiatric illness. Am J Psychiatry 1994; 151: 1571 83.
    • 74. MacDonald AB, Miranda JM. Concurrent neocortical borreliosis and Alzheimer's disease. Hum Pathol 1987; 18: 759 61.
    • 75. MacDonald AB. Concurrent neocortical borreliosis and Alzheimer's disease. Demonstration of a spirochetal cyst form. Ann N Y Acad Sci 1988; 539: 468 70. doi: http://dx.doi.org/ 10.1111/j.1749-6632.1988.tb31909.x
    • 76. MacDonald AB. Transfection ''Junk'' DNA a link to the pathogenesis of Alzheimer's disease? Med Hypotheses 2006; 66: 1140 1.
    • 77. Miklossy J, Khalili K, Gern L, Ericson RL, Darekar P, Bolle L, et al. Borrelia burgdorferi persists in the brain in chronic lyme neuroborreliosis and may be associated with Alzheimer disease. J Alzheimers Dis 2004; 6: 639 49; discussion 673 81.
    • 78. Bu XL, Yao XQ, Jiao SS, Zeng F, Liu YH, Xiang Y, et al. A study on the association between infectious burden and Alzheimer's disease. Eur J Neurol 2014. doi: http://dx.doi.org/ 10.1111/ene.12477 [Epub ahead of print].
    • 79. Gutacker M, Valsangiacomo C, Balmelli T, Bernasconi MV, Bouras C, Piffaretti JC. Arguments against the involvement of Borrelia burgdorferi sensu lato in Alzheimer's disease. Res Microbiol 1998; 149: 31 7.
    • 80. Pappolla MA, Omar R, Saran B, Andorn A, Suarez M, Pavia C, et al. Concurrent neuroborreliosis and Alzheimer's disease: analysis of the evidence. Hum Pathol 1989; 20: 753 7.
    • 81. Shiota S, Murakami K, Yoshiiwa A, Yamamoto K, Ohno S, Kuroda A, et al. The relationship between Helicobacter pylori infection and Alzheimer's disease in Japan. J Neurol 2011; 258: 1460 3. doi: http://dx.doi.org/10.1007/s00415-011-5957-5
    • 82. Kountouras J, Zavos C, Boziki M, Gavalas E, Kyriakou P, Deretzi G, et al. Association between Helicobacter pylori infection and Alzheimer's disease in Japan. J Neurol 2011; 258: 2086. http://dx.doi.org/10.1007/s00415-011-6054-5
    • 83. Kountouras J, Boziki M, Gavalas E, Zavos C, Deretzi G, Chatzigeorgiou S, et al. Five-year survival after Helicobacter pylori eradication in Alzheimer disease patients. Cogn Behav Neurol 2010; 23: 199 204. doi: http://dx.doi.org/10.1097/ WNN.0b013e3181df3034
    • 84. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 2005; 43: 5721 32.
    • 85. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, et al. The human microbiome. J Bacteriol 2010; 192: 5002 17. doi: http://dx.doi.org/10
    • 86. Imangaliyev S, Keijser B, Crielaard W, Tsivtsivadze E. Personalized microbial network inference via co-regularized spectral clustering. Methods 2015; 83: 28 35. doi: http://dx. doi.org/10.1016/j.ymeth.2015.03.017
    • 87. Segata N, Haake SK, Mannon P, Lemon KP, Waldron L, Gevers D, et al. Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol 2012; 13: R42. doi: http://dx.doi.org/10.1186/gb-2012-13-6-r42
    • 88. Axelsson P, Lindhe J, Nystro¨ m B. On the prevention of caries and periodontal disease. Results of a 15-year longitudinal study in adults. J Clin Periodontol 1991; 18: 182 9.
    • 89. Flemmig TF. Periodontitis. Ann Periodontol 1999; 4: 32 8.
    • 90. Armitage GC. Development of a classification system for periodontal diseases and conditions. Ann Periodontol 1999; 4: 1 6.
    • 91. Holt SC, Ebersole JL. Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia: the ''red complex,'' a prototype polybacterial pathogenic consortium in periodontitis. Periodontol 2000 2005; 38: 72 122.
    • 92. Colombo AP, Boches SK, Cotton SL, Goodson JM, Kent R, Haffajee AD, et al. Comparisons of subgingival microbial profiles of refractory periodontitis, severe periodontitis, and periodontal health using the human oral microbe identification microarray. J Periodontol 2009; 80: 1421 32. doi: http://dx. doi.org/10.1902/jop.2009.090185
    • 93. Preza D, Olsen I, Willumsen T, Boches SK, Cotton SL, Grinde B, et al. Microarray analysis of the microflora of root caries in elderly. Eur J Clin Microbiol Infect Dis 2009; 28: 509 17. doi: http://dx.doi.org/10.1007/s10096-008-0662-8
    • 94. Torlakovic L, Klepac-Ceraj V, Ogaard B, Cotton SL, Paster BJ, Olsen I. Microbial community succession on developing lesions on human enamel. J Oral Microbiol 2012; 4, 16125, doi: http://dx.doi.org/10.3402/jom.v4i0.16125
    • 95. Hardy JA, Mann DM, Wester P, Winblad B. An integrative hypothesis concerning the pathogenesis and progression of Alzheimer's disease. Neurobiol Aging 1986; 7: 489 502.
    • 96. Noble JM, Borrell LN, Papapanou PN, Elkind MSV, Scarmeas N, Wright CB. Periodontitis is associated with cognitive impairment among older adults: Analysis of NHANES-III. J Neurol Neurosurg Psychiatry 2009; 80: 1206 11. doi: http://dx.doi. org/10.1136/jnp.2009.174029
    • 97. Sparks Stein P, Steffen MJ, Smith C, Jicha G, Ebersole JL, Abner E, et al. Serum antibodies to periodontal pathogens are a risk factor for Alzheimer's disease. Alzheimers Dement 2012; 8: 196 203. doi: http://dx.doi.org/10.1016/j.jalz.2011.04.006
    • 98. Noble JM, Scarmeas N, Celenti RS, Elkind MSV, Wright CB, Schupf N, et al. Serum IgG antibody levels to periodontal microbiota are associated with incident Alzheimer disease. PLoS One 2014; 9: e114959. doi: http://dx.doi.org/10.1371/ journal.pone.0114959
    • 99. Hajishengallis G. Too old to fight? Aging and its toll on innate immunity. Mol Oral Microbiol 2010; 25: 25 37. doi: http://dx. doi.org/10.1111/j.2041-1014.2009.00562.x
    • 100. Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat Immunol 2010; 11: 785 97. doi: http://dx.doi.org/10.1038/ ni.1923
    • 101. Fong ON, Chan KY, Leung KT, Lam HS, Cheung HM, Leung TY, et al. Expression profile of cord blood neutrophils and dysregulation of HSPA1A and OLR1 upon challenge by bacterial peptidoglycan. J Leukoc Biol 2014; 95: 169 78. doi: http://dx.doi.org/10.1189/jlb.0413219
    • 102. Bibi F, Yasir M, Sohrab SS, Azhar EI, Al-Qahtani MH, Abuzenadah AM, et al. Link between chronic bacterial inflammation and Alzheimer disease. CNS Neurol Disord Drug Targets 2014; 13: 1140 7.
    • 103. Miklossy J, Kraftsik R, Pillevuit O, Lepori D, Genton C, Bosman FT. Curly fiber and tangle-like inclusions in the ependyma and choroid plexus a pathogenetic relationship with the cortical Alzheimer-type changes? J Neuropathol Exp Neurol 1998; 7: 1202 12.
    • 104. Miklossy J, Kis A, Radenovic A, Miller L, Forro L, Martins R, et al. Beta-amyloid deposition and Alzheimer's type changes induced by Borrelia spirochetes. Neurobiol Aging 2006; 27: 228 36.
    • 105. Hachinsky V, Munoz DG. Cerebrovascular pathology in Alzheimer's disease: cause, effect or epiphenomenon? Ann N Y Acad Sci 1997; 826: 1 6.
    • 106. Radolf JD, Desroisers DC. Treponema pallidum, the stealth pathogen, doth change, but how? Mol Microbiol 2009; 72: 1081 6. doi: http://dx.doi.org/10.1111/j.1365-2958.2009.06711.x
    • 107. Snowdon DA, Greiner LH, Mortimer JA, Riley KP, Greiner PA, Markesbery WR. Brain infarction and the clinical expression of Alzheimer disease. The Nun Study. JAMA 1997; 277: 813 7.
    • 108. Hajishengallis G. The inflammophilic character of the periodontitis-associated microbiota. Mol Oral Microbiol 2014; 29: 248 57. doi: http://dx.doi.org/10.1111/omi.12065
    • 109. Singhrao SK, Harding A, Poole S, Kesavalu L, Crean S. Porphyromonas gingivalis periodontal infection and its putative links with Alzheimer's disease. Mediators Inflamm 2015; 2015: 137357.
    • 110. Reife RA, Coats SR, Al-Qutub M, Dixon DM, Braham PA, Billharz RJ, et al. Porphyromonas gingivalis lipopolysaccharide lipid A heterogeneity: differential activities of tetra- and pentaacylated lipid A structures on E-selectin expression and TLR4 recognition. Cell Microbiol 2006; 8: 857 68.
    • 111. Kocgozlu L, Elkaim R, Tenenbaum H, Werner S. Variable cell responses to P. gingivalis lipopolysaccharide. J Dent Res 2009; 88: 741 5. doi: http://dx.doi.org/10.1177/0022034509341166
    • 112. Belstrøm D, Holmstrup P, Damgaard C, Borch TS, Skjødt MO, Bendtzen K, et al. The atherogenic bacterium Porphyromonas gingivalis evades circulating phagocytes by adhering to erythrocytes. Infect Immun 2011; 79: 1559 65. doi: http://dx.doi.org/10
    • 113. Poole S, Singhrao SK, Chukkapalli S, Rivera M, Velsko I, Kesavalu L, et al. Active invasion of Porphyromonas gingivalis and infection-induced complement activation in ApoE / mice brains. J Alzheimers Dis 2015; 43: 67 80.
    • 114. Xu F, Sternberg MR, Kottiri BJ, McQuillan GM, Lee FK, Nahmias AJ, et al. Trends in herpes simplex virus type 1 and type 2 seroprevalence in the United States. JAMA 2006; 296: 964 73.
    • 115. Bu¨ nzli D, Wietlisbach V, Barazzoni F, Sahli R, Meylan PR. Seroepidemiology of Herpes simplex virus type 1 and 2 in Western and Southern Switzerland in adults aged 25 74 in 1992 93: a population-based study. BMC Infect Dis 2004; 17: 10.
    • 116. Malkin JE, Morand P, Malvy D, Ly TD, Chanzy B, de Labareyre C, et al. Seroprevalence of HSV-1 and HSV-2 infection in the general French population. Sex Transm Infect 2002; 78: 201 3.
    • 117. Slots J. Herpesvirus periodontitis: infection beyond biofilm. J Calif Dent Assoc 2011; 39: 393 9.
    • 118. Carter CJ. Alzheimer's disease plaques and tangles: cemeteries of a Pyrrhic victory of the immune defense network against herpes simplex infection at the expense of complement and inflammation-mediated neuronal destruction. Neurochem Int 2011; 58: 301 20. doi: http://dx.doi.org/10.1016/j.neuint.2010. 12.003
    • 119. De Chiara G, Marcocci ME, Civitelli L, Argnani R, Piacentini R, Ripoli C, et al. APP processing induced by herpes simplex virus type 1 (HSV-1) yields several APP fragments in human and rat neuronal cells. PLoS One 2010; 5: e13989. doi: http:// dx.doi.org/10.1371/journal.pone.0013989
    • 120. Itzhaki RF, Cosby SL, Wozniak MA. Herpes simplex virus type 1 and Alzheimer's disease: the autophagy connection. J Neurovirol 2008; 14: 1 4. doi: http://dx.doi.org/10.1080/ 13550280701802543
    • 121. Wozniak MA, Mee AP, Itzaki RF. Herpes simplex virus type I DNA is located within Alzheimer's disease amyloid plaques. J Pathol 2009; 217: 131 8.
    • 122. Wisniewski T, Ghiso J, Frangione B. Alzheimer's disease and soluble A beta. Neurobiol Aging 1994; 15: 143 52.
    • 123. Zlokovic BV, Yamada S, Holtzman D, Ghiso J, Frangione B. Clearance of amyloid beta-peptide from brain: transport or metabolism? Nat Med 2000; 6: 718 19.
    • 124. Aiello AE, Haan M, Blythe L, Moore K, Gonzalez JM, Jagust W. The influence of latent viral infection on rate of cognitive decline over 4 years. J Am Geriatr Soc 2006; 54: 1046 54.
    • 125. Itzhaki RF, Lin WR, Shang D, Wilcock GK, Faragher B, Jamieson GA. Herpes simplex virus type 1 in brain and risk of Alzheimer's disease. Lancet 1997; 349: 241 4.
    • 126. Lurain NS, Hanson BA, Martinson J, Leurgans SE, Landay AL, Bennett DA, et al. Virological and immunological characteristics of human cytomegalovirus infection associated with Alzheimer disease. J Infect Dis 2013; 208: 564 72. doi: http://dx.doi.org/10.1093/infdis/jit210
    • 127. Jamieson GA, Maitland NJ, Wilcock GK, Yates CM, Itzhaki RF. Herpes simplex virus type 1 DNA is present in specific regions of brain from aged people with and without senile dementia of the Alzheimer type. J Pathol 1992; 167: 365 8.
    • 128. Ball MJ. ''Limbic'' predilection in Alzheimer dementia: is reactivated herpesvirus involved? Can J Neurol 1982; 9: 303 6.
    • 129. Ball MJ, Lukiw WJ, Kammermann EM, Hill JM. Intracerebral propagation of Alzheimer's disease: strengthening evidence of a herpes virus etiology. Alzheimers Dement 2013; 9: 169 75. doi: http://dx.doi.org/10.1016/j.jalz.2012.07.005
    • 130. Gibson KL, Wu YC, Barnett Y, Duggan O, Vaughan R, Kondeatis E, et al. B-cell diversity decreases in old age and is correlated with poor health status. Aging Cell 2009; 8: 18 25.
    • 131. Wozniak MA, Shipley SJ, Combrinck M, Wilcock GK, Itzhaki RF. Productive herpes simplex virus in brain of elderly normal subjects and Alzheimer's disease patients. J Med Virol 2005; 75: 300 6.
    • 132. Lin WR, Graham J, MacGowan SM, Wilcock GK, Itzhaki RF. Alzheimer's disease, herpes virus in brain, apolipoprotein E4 and herpes labialis. Alzheimer's Rep 1998; 1: 173 8.
    • 133. Urovesic N, Martins RN. Infection and Alzheimer's disease: the APOE epsilon4 connection and lipid metabolism. J Alzheimers Dis 2008; 13: 421 35.
    • 134. Lo¨vheim H, Gilthorpe J, Adolfsson R, Nilsson LG, Elgh F. Reactivated herpes simplex infection increases the risk of Alzheimer's disease. Alzheimers Dement 2015; 11: 593 9. doi: http://dx.doi.org/10.1016/j.jalz.2014.04.522
    • 135. Kobayashi N, Nagata T, Shinagawa S, Oka N, Shimada K, Shimizu S, et al. Increase in the IgG activity index due to herpes simplex virus type 1 reactivation and its relationship with cognitive function in amnestic mild cognitive impairment and Alzheimer's disease. Biochem Biophys Res Commun 2013; 430: 907 11. doi: http://dx.doi.org/10.1016/j.bbrc.2012.12.054
    • 136. Letenneur L, Pe´re`s K, Fleury H, Garrigue I, Barberger-Gateau P, Helmer C, et al. Seropositivity to herpes simplex virus antibodies and risk of Alzheimer's disease: a population-based cohort study. PLoS One 2008; 3: e3637.
    • 137. Hill MJ, Zhao Y, Clement C, Neumann DM, Lukiw WJ. HSV-1 infection of human brain cells induces miRNA-146a and Alzheimer-type inflammatory signaling. Neuroreport 2009; 20: 1500 5. doi: http://dx.doi.org/10.1097/WNR.0b013 e3283329c05
    • 138. Lewis RE. Overview of the changing epidemiology of candidemia. Curr Med Res Opin 2009; 25: 1732 40. doi: http://dx. doi.org/10.1185/03007990902990817
    • 139. Miceli MH, Diaz JA, Lee SA. Emerging opportunistic yeast infections. Lancet Infect Dis 2011; 11: 142 51. doi: http://dx. doi.org/10.1016/S1473-3099(10)70218-8
    • 140. Song X, Eribe ER, Sun J, Hansen BF, Olsen I. Genetic relatedness of oral yeasts within and between patients with marginal periodontitis and subjects with oral health. J Periodontal Res 2005; 40: 446 52.
    • 141. Kumar J, Sharma R, Sharma M, Prabhavathi V, Paul J, Chowdary CD. Presence of Candida albicans in root canals of teeth with apical periodontitis and evaluation of their possible role in failure of endodontic treatment. J Int Oral Health 2015; 7: 42 5.
    • 142. Olsen I. Denture stomatitis, Occurrence and distribution of fungi. Acta Odontol Scand 1974; 32: 329 33.
    • 143. Alonso R, Pisa D, Marina AI, Morato E, Ra´bano A, Carrasco L. Fungal infections in patients with Alzheimer's disease. J Alzheimers Dis 2014; 41: 301 11. doi: http://dx.doi.org/10. 3233/JAD-132681
    • 144. Alonso R, Pisa D, Ra´bano A, Carrasco L. Alzheimer's disease and disseminated mycoses. Eur J Clin Microbiol Infect Dis 2014; 33: 1125 32. doi: http://dx.doi.org/10.1007/s10096-013- 2045-z
    • 145. Castellani RJ, Perry G, Smith MA. The role of novel chitin-like polysaccharides in Alzheimer disease. Neurotox Res 2007; 12: 269 74.
    • 146. Watabe-Rudolph M, Song Z, Lausser L, Schnack C, BegusNahrmann Y, Scheithauer MO, et al. Chitinase enzyme activity in CSF is a powerful biomarker of Alzheimer disease. Neurology 2012; 78: 569 77. doi: http://dx.doi.org/10.1212/ WNL.0b013e318247caa1
    • 147. Pisa D, Alonso R, Juarranz A, Ra´bano A, Carrasco L. Direct visualization of fungal infection in brains from patients with Alzheimer's disease. J Alzheimers Dis 2015; 43: 613 24. doi: http://dx.doi.org/10.3233/JAD-141386
    • 148. Ala TA, Doss RC, Sullivan CJ. Reversible dementia: a case of cryptococcal meningitis masquerading as Alzheimer's disease. J Alzheimers Dis 2004; 6: 503 8.
    • 149. Hoffmann M, Muniz J, Carroll E, De Villasante J. Cryptococcal meningitis misdiagnosed as Alzheimer's disease: complete neurological and cognitive recovery with treatment. J Alzheimers Dis 2009; 16: 517 20. doi: http://dx.doi.org/10. 3233/JAD-2009-0985
    • 150. Singhrao SK, Harding A, Simmons T, Robinson S, Kesavalu L, Crean S. Oral inflammation, tooth loss, risk factors, and association with progression of Alzheimer's disease. J Alzheimers Dis 2014; 42: 723 37.
    • 151. Olsen I. Update on bacteraemia related to dental procedures. Transfus Apher Sci 2008; 39: 173 8. doi: http://dx.doi.org/10. 1016/j.transci.2008.06.008
    • 152. Tomas I, Diz P, Tobias A, Scully C, Donos N. Periodontal health status and bacteraemia from daily oral activities: systematic review/meta-analysis. J Clin Periodontol 2012; 39: 213 28.
    • 153. Navarathna DH, Munasinghe J, Lizak MJ, Nayak D, McGavern DB, Roberts DD. MRI confirms loss of blood brain barrier integrity in a mouse model of disseminated candidiasis. NMR Biomed 2013; 26: 1125 34. doi: http://dx. doi.org/10.1002/nbm.2926
    • 154. Holmes C, Cotterell D. Role of infection in the pathogenesis of Alzheimer's disease. CNS Drugs 2009; 23: 993 1002. doi: http://dx.doi.org/10.2165/11310910-000000000-00000
    • 155. Bell RD, Winkler EA, Singh I, Sagare AP, Deane R, Wu Z, et al. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature 2012; 485: 512 6. doi: http://dx. doi.org/10.1038/nature11087
    • 156. Ujiie M, Dickstein DL, Carlow DA, Jefferies WA. Blood brain barrier permeability precedes senile plaque formation in an Alzheimer disease model. Microcirculation 2003; 10: 463 70.
    • 157. Fry M, Ferguson AV. The sensory circumventricular organs: brain targets for circulating signals controlling ingestive behavior. Physiol Behav 2007; 91: 413 23.
    • 158. Mann DM, Tucker CM, Yates PO. Alzheimer's disease: an olfactory connection? Mech Ageing Dev 1988; 42: 1 15.
    • 159. Danielyan L, Scha¨fer R, von Ameln-Mayerhofer A, Buadze M, Geisler J, Klopfer T, et al. Intranasal delivery of cells to the brain. Eur J Cell Biol 2009; 88: 315 24. doi: http://dx.doi. org/10.1016/j.ejcb.2009.02.001
    • 160. Johnson NJ, Hanson LR, Frey WH. Trigeminal pathways deliver a low molecular weight drug from the nose to the brain and orofacial structures. Mol Pharm 2010; 7: 884 93. doi: http://dx.doi.org/10.1021/mp100029t
    • 161. Leung JY, Chapman JA, Harris JA, Hale D, Chung RS, West AK, et al. Olfactory ensheathing cells are attracted to, and can endocytose, bacteria. Cell Moll Life Sci 2008; 65: 2732 9. doi: http://dx.doi.org/10.1007/s00018-008-8184-1
    • 162. Kova´cs T, Cairns NJ, Lantos PL. Beta-amyloid deposition and neurofibrillary tangle formation in the olfactory bulb in ageing and Alzheimer's disease. Neuropathol Appl Neurobiol 1999; 25: 481 91.
    • 163. Wesson DW, Levy E, Nixon RA, Wilson DA. Olfactory dysfunction correlates with amyloid-beta burden in an Alzheimer's disease mouse model. J Neurosci 2010; 30: 505 14. doi: http://dx.doi.org/10.1523/JNEUROSCI.4622-09. 2010
    • 164. Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 1991; 349: 704 6.
    • 165. Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, Pettingell WH, et al. Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science 1995; 269: 973 7.
    • 166. Rogaev EI, Sherrington R, Rogaeva EA, Levesque G, Ikeda M, Liang Y, et al. Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene. Nature 1995; 376: 775 8.
    • 167. Nicoll JA, Mrak RE, Graham DI, Stewart J, Wilcock G, MacGowan S, et al. Association of interleukin-1 gene polymorphisms with Alzheimer's disease. Ann Neurol 2000; 47: 365 8.
    • 168. McGeer PL, McGeer EG. History of innate immunity in neurodegenerative disorders. Front Pharmacol 2011; 2: 77. doi: http://dx.doi.org/10.3389/fphar.2011.00077
    • 169. Kornman KS, Crane A, Wang HY, di Giovine FS, Newman MG, Pirk FW, et al. The interleukin-1 genotype as a severity factor in adult periodontal disease. J Clin Periodontol 1997; 24: 72 7.
    • 170. Galbraith GM, Hendley TM, Sanders JJ, Palesch Y, Pandey JP. Polymorphic cytokine genotypes as markers of disease severity in adult periodontitis. J Clin Periodontol 1999; 26: 705 9.
    • 171. Shao MY, Huang P, Cheng R, Hu T. Interleukin-6 polymorphisms modify the risk of periodontitis: a systematic review and meta-analysis. J Zhejiang Univ Sci B 2009; 10: 920 7. doi: http://dx.doi.org/10.1631/jzus.B0920279
    • 172. Di Bona D, Candore G, Franceschi C, Licastro F, ColonnaRomano G, Camma` C, et al. Systematic review by metaanalyses on the possible role of TNF-alpha polymorphisms in association with Alzheimer's disease. Brain Res Rev 2009; 61: 60 8. doi: http://dx.doi.org/10.1016/j.brainresrev.2009. 05.001
    • 173. Yang W, Jia Y, Wu H. Four tumor necrosis factor alpha genes polymorphisms and periodontitis risk in a Chinese population. Hum Immunol 2013; 74: 1684 7. doi: http://dx.doi.org/10. 1016/j.humimm.2013.08.009
    • 174. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat Genet 2013; 45: 1452 8. doi: http://dx.doi.org/10.1038/ng. 2802
    • 175. Yuan H, Xia Q, Ge P, Wu S. Genetic polymorphism of interleukin 1b-511C/T and susceptibility to sporadic Alzheimer's disease: a meta-analysis. Mol Biol Rep 2013; 40: 1827 34. doi: http://dx.doi.org/10.1007/s11033-012-2237-0
    • 176. Di Bona D, Plaia A, Vasto S, Cavallone L, Lescai F, Franceschi C, et al. Association between the interleukin-1beta polymorphisms and Alzheimer's disease: a systematic review and meta-analysis. Brain Res Rev 2008; 59: 155 63. doi: http:// dx.doi.org/10.1016/j.brainresrev.2008.07.003
    • 177. Zhu XC, Tan L, Jiang T, Tan MS, Zhang W, Yu JT. Association of IL-12A and IL-12B polymorphisms with Alzheimer's disease susceptibility in a Han Chinese population. J Neuroimmunol 2014; 274: 180 4. doi: http://dx.doi.org/10.1016/j.jneuroim. 2014.06.026
    • 178. Paya˜o SL, Gonc¸alves GM, de Labio RW, Horiguchi L, Mizumoto I, Rasmussen LT, et al. Association of interleukin 1b polymorphisms and halotypes with Alzheimer's disease. J Neuroimmnol 2012; 247: 59 62. doi: http://dx.doi.org/10. 1016/j.jneuroim.2012.03.012
    • 179. Wang B, Zhou S, Yang Z, Xie YC, Wang J, Zhang P, et al. Genetic analysis of tumor necrosis factor-alpha (TNF-alpha) G-308A and Saitohin Q7R polymorphisms with Alzheimer's disease. J Neurol Sci 2008; 270: 148 51. doi: http://dx.doi.org/ 10.1016/j.jns.2008.02.021
    • 180. Lio D, Annoni G, Licastro F, Crivello A, Forte GI, Scola L, et al. Tumor necrosis factor-alpha -308A/G polymorphism is associated with age at onset of Alzheimer's disease. Mech Ageing Dev 2006; 127: 567 71.
    • 181. Kornman KS. Interleukin 1 genetics, inflammatory mechanisms, and nutrigenetic opportunities to modulate diseases of aging. Am J Clin Nutrit 2006; 83: 475S 83S.
    • 182. Sando SB, Melquist S, Cannon A, Hutton ML, Sletvold O, Saltvedt I, et al. APOE epsilon 4 lowers age onset and is a high risk factor for Alzheimer's disease: a case control study from central Norway. BMC Neurol 2008; 8: 9. doi: http://dx.doi. org/10.1186/1471-2377-8-9
    • 183. Desikan RS, Schork AJ, Wang Y, Thompson WK, Dehghan A, Ridker PM, et al. Polygenic overlap between C-reactive protein, plasma lipids and Alzheimer's disease. Circulation 2015; 131; 2061 9. doi: http://dx.doi.org/10.1161/CIRCULATIONAHA.115.015489
    • 184. Engelborghs S, Gilles C, Ivanoiu A, Vandewoude M. Rationale and clinical data supporting nutritional intervention in Alzheimer's disease. Acta Clin Belg 2014; 69: 17 24. doi: http://dx.doi.org/10.1179/0001551213Z.0000000006
    • 185. Cerajewska TL, Davies M, West NX. Periodontitis: a potential risk factor for Alzheimer's disease. Brit Dent J 2015; 218: 29 34.
    • 186. Cicciu` M, Matacena G, Signorino F, Brugaletta A, Cicciu` A, Bramanti E. Relationship between oral health and its impact on the quality life of Alzheimer's disease patients: a supportive care trial. Int J Clin Exp Med 2013; 6: 766 72.
    • 187. Stewart R, Sabbah W, Tsakos G, D'Aiuto F, Watt RG. Oral health and cognitive function in the Third National Health and Nutrition Examination Survey (NHANES III). Psychosom Med 2008; 70: 936 41. doi: http://dx.doi.org/10. 1097/PSY.0b013e3181870aec
    • 188. Stein PS, Kryscio RJ, Desrosiers M, Donegan SJ, Gibbs MB. Tooth loss, apolipoprotein E, and decline in delayed word recall. J Dent Res 2010; 89: 473 7. doi: http://dx.doi.org/10. 1177/0022034509357881
    • 189. Gatz M, Mortimer JA, Fratiglioni L, Johansson B, Berg S, Reynolds CA, et al. Potentially modifiable risk factors for dementia in identical twins. Alzheimers Dement 2006; 2: 110 7. doi: http://dx.doi.org/10.1016/j.jalz.2006.01.002 190. Kaye EK, Valencia A, Baba N, Spiro A 3rd, Dietrich T, Garcia RI. Tooth loss and periodontal disease predict poor cognitive function in older men. J Am Geriatr Soc 2010; 58: 713 8. doi: http://dx.doi.org/10.1111/j.1532-5415.2010.02788.x
    • 191. de Souza Rolim T, Fabri GM, Nitrini R, Anghinah R, Teixeira MJ, de Siqueira JT, et al. Oral infections and orofacial pain in Alzheimer's disease: a case-control study. J Alzheimers Dis 2014; 38: 823 9. doi: http://dx.doi.org/10.3233/JAD-131283
    • 192. Corrada MM, Paganini-Hill A, Berlau DJ, Kawas CH. Apolipoprotein E genotype, dementia, and mortality in the oldest old: the 90 study. Alzheimers Dement 2013; 9: 12 8.
    • 193. Loeb MB, Molloy DW, Smieja M, Standish T, Goldsmith CH, Mahony J, et al. A randomized, controlled trial of doxycycline and rifampin for patients with Alzheimer's disease. J Am Geriatr Soc 2004; 52: 381 7.
    • 194. Ferretti MT, Allard S, Partridge V, Ducatenzeiler A, Cuello AC. Minocycline corrects early, pre-plaque neuroinflammation and inhibits BACE-1 in a transgenic model of Alzheimer's disease-like amyloid pathology. J Neuroinflammation 2012; 9: 62. doi: http://dx.doi.org/10.1186/1742-2094-9-62
    • 195. in't Veld BA, Ruitenberg A, Hofman A, Stricker BH, Breteler MM. Antihypertensive drugs and incidence of dementia: the Rotterdam Study. Neurobiol Aging 2001; 22: 407 12.
    • 196. Stewart WF, Kawas C, Corrada M, Metter EJ. Risk of Alzheimer's disease and duration of NSAID use. Neurology 1997; 48: 626 32.
    • 197. McGeer PL, McGeer EG. Anti-inflammatory drugs in the fight against Alzheimer's disease. Ann N Y Acad Sci 1996; 777: 213 20.
    • 198. Itzhaki R, Wozniak MA. Could antivirals be used to treat Alzheimer's disease. Future Microbiol 2012; 7: 307 9.
    • 199. Lin WR, Jennings R, Smith TL, Wozniak MA, Itzhaki RF. Vaccination prevents latent HSV1 infection of mouse brain. Neurobiol Aging 2001; 22: 699 703.
    • 200. Mori I. ''Spontaneous molecular reactivation'' of herpes simplex virus type 1 in the brain as a pathogenic mechanism of Alzheimer's disease. Med Hypotheses 2011; 77: 462.
    • 201. Wozniak MA, Itzhaki RF. Intravenous immunoglobulin reduces b amyloid and abnormal tau formation caused by herpes simplex virus type 1. J Neuroimmunol 2013; 257: 7 12. doi: http://dx.doi.org/10.1016/j.jneuroim.2013.01.005
    • 202. Jalkute CB, Sonawane KD. Evaluation of a possible role of Stigmatella aurantiaca ACE in Ab peptide degradation: a molecular modeling approach. J Mol Microbiol Biotechnol 2015; 25: 26 36. doi: http://dx.doi.org/10.1159/000370114
    • 203. Chiarini A, Gardenal E, Whitfield JF, Chakravarthy B, Armato U, Dal Pra I. Preventing the spread of Alzheimer's disease neuropathology: a role for calcilytics? Curr Pharm Biotechnol 2015; 16: 696 706.
    • 204. Hochgra¨fe K, Sydow A, Matenia D, Cadinu D, Ko¨ nen S, Petrova O, et al. Preventive methylene blue treatment preserves cognition in mice expressing full-length pro- aggregant human Tau. Acta Neuropathol Commun 2015; 3: 25. doi: http://dx. doi.org/10.1186/s40478-015-0204-4
    • 205. Richard T, Pawlus AD, Igle´sias ML, Pedrot E, Waffo-Teguo P, Me´rillon JM, et al. Neuroprotective properties of resveratrol and derivatives. Ann N Y Acad Sci 2011; 1215: 103 8. doi: http://dx.doi.org/10.1111/j.1749-6632.2010.05865.x
    • 206. Regitz C, Fitzenberger E, Mahn FL, Dußling LM, Wenzel U. Resveratrol reduces amyloid-beta (Ab1-42)-induced paralysis through targeting proteostasis in an Alzheimer model of Caenorhabditis elegans. Eur J Nutr 2015. [Epub ahead of print].
    • 207. H a˚heim LL, Olsen I, Rønningen KS. Oral infection, regular alcohol drinking pattern, and myocardial infarction. Med Hypotheses 2012; 79: 725 30. doi: http://dx.doi.org/10. 1016/j.mehy.2012.08.010
    • 208. Song Y, Kim HD, Lee MK, Kim MK, Kang SN, Ko YG, et al. Protective effect of centipedegrass against Ab oligomerization and Ab-mediated cell death in PC12 cells. Pharm Biol 2015; 8: 1 7.
    • 209. Kontsekova E, Zilka N, Kovacech B, Novak P, Novak M. First-in-man tau vaccine targeting structural determinants essential for pathological tau tau interaction reduces tau oligomerisation and neurofibrillary degeneration in an Alzheimer's disease model. Alzheimers Res Ther 2014; 6: 44. doi: http://dx.doi.org/ 10.1186/alzrt278
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Funded by projects


Cite this article

Collected from