Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Lejenäs, Harald (2011)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article

Classified by OpenAIRE into

arxiv: Physics::Atmospheric and Oceanic Physics, Physics::Fluid Dynamics
The terms expressing conversion between eddy kinetic and zonal kinetic energy and between eddy available and eddy kinetic energy are studied, in order to establish the contribution of barotropic and baroclinic processes respectively to the increase of eddy kinetic energy in an amplifying disturbance. After specification of initial fields the tendencies at time t = 0 are solved analytically using the quasi-geostrophic equations of motion and the ?-equation. Comparisons between this method, which depends on the specification of initial fields, and the ordinary eigen-value method are made, and it is found that the results are similar. The problem of solving the combined barotropic-baroclinic case is complicated using the eigen-value method, but investigation of the initial tendencies of the energy conversion terms gives an insight into this problem in an easy way.DOI: 10.1111/j.2153-3490.1973.tb01591.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Bretherton, F. P. 1966. Critical layer instability in baroclinic flows. Quart. J . R. Met. Sac. 92. 325- 334.
    • Brown, J. A. 1969. A numerical investigation of hydrodynamic instability and energy conversions in the quasi-geostrophic atmosphere. J . Atmos. Sci. 26, Part I , 352-365; Part 11, 366-375.
    • Charney, J. G. 1947. The dynamics of long waves in a baroclinic westerly current. J . Meteor. 4 , 135- 162.
    • Charney, J. G. 85 Stern, M. E . 1962. On the stability of internal baroclinic jets in a rotating atmosphere. J . Atmos. Sci. 19, 159-172.
    • Derome, J . F. & Wiin-Nielsen, A. 1966. On the baroclinic stability of zonal flow in simple model atmospheres. The University of Michigan, Dept. of Meteorology and Oceanography, Technical rcport no. 2.
    • Eady, E. T. 1949. Long waves and cyclone waves. Tellus 1, No. 3, 33-52.
    • Fiseher, G. 1968. Ein Beitrag zum Problem der barotropen Instabilitat. Be&. Phys. Atmos. 41, 9-25.
    • Fischer, G. & Renner, V. 1971. Numerical and analytical studies on the energy conversions in a baroclinic model. J . Atmos. Sci. 28, 512-522.
    • Foote, J . R. & Lin, C. C. 1951. Some recent investigations in tho theory of hydrodynamic stability. Quart. appl. Math. 8 , 265-280.
    • Gates, W. L. 1961. Static stability mmsurcs i c the atmosphere. J . Meteor. 18, 526-553.
    • Green, J. 8. A. 1960. A problem in baroclinic stability. Quart. J . Roy. Meteor. Soc. 86, 237-251.
    • Hirota, I. 1968. On the dynamics of long and ultralong waves in a baroclinic zonal current. J . Met. SOCJ.apan 4 6 , 234-249.
    • Jacobs, 8. J. & Wiin-Nielsen, A. 1966. On the stability of a barotropic basic flow in a stratified atmosphere. J . Atmos. Sci. 2 3 , 682-687.
    • Kuo, H.-L. 1949. Dynamic instability of twodimensional non-divergent flow in a barotropic atmosphere. J . Meteor. 6 , 105-122.
    • Kuo, H.-L. 1953. On the production of mean zonal currents in the atmosphere by large disturbances. Tellus 5, 475-493.
    • Lipps, F. B. 1962. Stability of jets in a divcrgent barotropic fluid. J . Atm. Sci. 20, 120-129.
    • Lipp.3, F . B. 1965. The stability of an asymmetric zonal current in the atmosphrrc. J . Fluid Mech. 11, 397-407.
    • Lipps, F. B. 1966. Momentum transfer across an asymmetric jet. J . Atm. Sci. 2 3 , 213-222.
    • Lorcnz, E. N. 1960. Energy and numerical wcather prediction. Tellus 12, 364-373.
    • Ogura, Y. 1957. Wave solutions of the vorticity equation for the 2i-dimensionalmodel. J . Meteor. 14, 60-64.
    • Phillips, N. 1951. A simple three-dimensional model for the study of large-scale extratropical flow patterns. J . Meteor. 8, 381-394
    • Pedlosky, J. 1964. The stability of currents in the atmosphere and the ocean. J . Atmos. Sci. 21, Part I , 201-219, Part 11, 342-353.
    • Platzman, G. W. 1952. The incrcasc or decrrase of mean-flow energy in large-scalc horizontal flow in tho atmospherz. J . Meteor. 9 , 347-358.
    • Rayleigh, Lord, 1880. On the stability, or instability, of certain fluid motions. Scientific Papers 1, 474-487. Cambridge Univ. Press.
    • Rayleigh, Lord, 1913. On the stability of the laminar motion of an inviscid fluid. Scientific Papers 6 , 197-204. Cambridge Univ. Press.
    • Tollmien, W. 1935. Ein allgemeines Kriterium der Jnstabilitiit laminarer Geschwindigkeitsvcrteilungen. Nachr. Ges. Wiss. Gottingen, Math.-Phys. Klasse 50, 79-114.
    • Wiin-Nielsen, A. 1962. On truncation errors d11c to vertical differences in various numerical prediction models. Tellus 14, 261-280.
    • Yanai, M. & Nitta, T. 1968. Finite difference approximations for the barotropic instability problem. J . Met. SOC(. Japan)46, 389-403.
  • No related research data.
  • No similar publications.
  • BioEntity Site Name
    2nldProtein Data Bank

Share - Bookmark

Cite this article

Collected from