LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Ioannou, Dimitris; Griffin, Darren K. (2010)
Publisher: CoAction Publishing
Journal: Nano Reviews
Languages: English
Types: Article
Subjects: Q, Review Articles, TP1-1185, FISH, quantum dot, nanotechnology, Chemical technology, imaging
Quantum dots (QDs) are a novel class of inorganic fluorochromes composed of nanometer-scale crystals made of a semiconductor material. They are resistant to photo-bleaching, have narrow excitation and emission wavelengths that can be controlled by particle size and thus have the potential for multiplexing experiments. Given the remarkable optical properties that quantum dots possess, they have been proposed as an ideal material for use in molecular cytogenetics, specifically the technique of fluorescent in situ hybridisation (FISH). In this review, we provide an account of the current QD-FISH literature, and speculate as to why QDs are not yet optimised for FISH in their current form. Prof. Darren Griffin holds the chair in genetics at the University of Kent, Canterbury, UK. He is a graduate of the University of Manchester (BSc and DSc) and University College London (PhD). He is a Fellow of the Royal College of Pathology and of the Society of Biology. He has published over 100 papers on aspects related to chromosome research and runs a busy research laboratory. Dimitris Ioannou is a final year PhD student in the laboratory of Professor Griffin. He is a graduate of the University of Wales (BSc) and Nottingham (MPhil), and has performed original research work on applications of FISH including QD-FISH.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Chan WC. Bionanotechnology progress and advances. Biol Blood Marrow Transplant 2006; 12: 87 91.
    • 2. Parak WJ, Gerion D, Pellegrino T, Zanchet D, Micheel C, Williams SC, et al. Biological applications of colloidal nanocrystals. Nanotechnology 2003; 14: R15 27.
    • 3. Jaiswal JK, Simon SM. Potentials and pitfalls of fluorescent quantum dots for biological imaging. Trends Cell Biol 2004; 14: 497 504.
    • 4. Reed MA, Bate RT, Bradshaw WM, Duncan WR, Frensley JWL, Shih HD. Spatial quantization in GaAs-AlGaAs multiple quantum dots. J Vac Sci Technol B 1986; 4: 358 60.
    • 5. Miller DAB, Chemla DS, Schmittrink S. Absorption saturation of semiconductor quantum dots. J Opt Soc Am B 1986; 3: 42.
    • 6. Lipovskii A, Kolobkova E, Petrikov V, Kang I, Olkhovets A, Krauss T, et al. Synthesis and characterization of PbSe quantum dots in phosphate glass. Appl Phys Lett 1997; 71: 3406 8.
    • 7. Invitrogen. Qdot nanocrystal technology. Vol. 2006. Carlsbad, CA: Invitrogen Corporation; 2006.
    • 8. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005; 307: 538 44.
    • 9. Quantum Dot Corporation. Qdot nanocrystals. In: Anatomy. Vol. 2006. Hayward, CA: Quantum Dot Corporation (QDC); 2006.
    • 10. Chan WC, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S. Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 2002; 13: 40 6.
    • 11. Murray CB, Norris DJ, Bawendi MG. Synthesis and characterization of nearly monodisperse CdE (E S, Se, Te) semiconductor nanocrystallites. J Am Chem Soc 1993; 115: 8706 15.
    • 12. Michalet X, Pinaud F, Thilo DL, Dahan M, Bruchez MP, Alivisatos AP, et al. Properties of fluorescent semiconductor nanocrystals and their application to biological labeling. Single Mol 2001; 2: 261 76.
    • 13. Fu A, Alivisatos AP, Gu W, Larabell C. Semiconductor nanocrystals for biological imaging. Curr Opin Neurobiol 2005; 15: 568 75.
    • 14. Alivisatos AP, Gu W, Larabell C. Quantum dots as cellular probes. Annu Rev Biomed Eng 2005; 7: 55 76.
    • 15. Alivisatos AP. Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem B 1996; 100: 13226 39.
    • 16. Alivisatos P. The use of nanocrystals in biological detection. Nat Biotechnol 2004; 22: 47 52.
    • 17. Jonathan C. A quantum paintbox. Chemistry World 2003: 1 8. Available from: http://www.rsc.org/chemistryworld/Issues/2003/ September/paintbox.asp [cited 4 March 2010].
    • 18. Chan WC, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998; 281: 2016 8.
    • 19. Arya H, Kaul Z, Wadhwa R, Taira K, Hirano T, Kaul SC. Quantum dots in bio-imaging: revolution by the small. Biochem Biophys Res Commun 2005; 329: 1173 7.
    • 20. Green M. Semiconductor quantum dots as biological imaging agents. Angew Chem Int Ed Engl 2004; 43: 4129 31.
    • 21. Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, et al. (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 1997; 101: 9463 75.
    • 22. Bailey RE, Smith AM, Nie S. Quantum dots in biology and medicine. Physica E 2004; 25: 1 12.
    • 23. Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW, et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 2003; 300: 1434 6.
    • 24. Gao X, Yang L, Petros JA, Marshall FF, Simons JW, Nie S. In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 2005; 16: 63 72.
    • 25. Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP, et al. Immunofluorescent labeling of cancer marker HER2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 2003; 21: 41 6.
    • 26. Jaiswal JK, Mattoussi H, Mauro JM, Simon SM. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 2003; 21: 47 51.
    • 27. Lounis B, Bechtel HA, Gerion D, Alivisatos PA, Moerner WE. Photon antibunching in single CdSe/ZnS quantum dot fluorescence. Chem Phys Lett 2000; 329: 399 404.
    • 28. Michler P, Imamoglu A, Mason MD, Carson PJ, Strouse GF, Buratto SK. Quantum correlation among photons from a single quantum dot at room temperature. Nature 2000; 406: 968 70.
    • 29. Pinaud F, Michalet X, Bentolila LA, Tsay JM, Doose S, Li JJ, et al. Advances in fluorescence imaging with quantum dot bioprobes. Biomaterials 2006; 27: 1679 87.
    • 30. Efros AL, Rosen M. Random telegraph signal in the photoluminescence intensity of a single quantum dot. Phys Rev Lett 1997; 78: 1110 3.
    • 31. Hohng S, Ha T. Near-complete suppression of quantum dot blinking in ambient conditions. J Am Chem Soc 2004; 126: 1324 5.
    • 32. Lee SF, Osborne MA. Brightening, blinking, bluing and bleaching in the life of a quantum dot: friend or foe? Chemphyschem 2009; 10: 2174 91.
    • 33. Gerion D, Pinaud F, Williams SC, Parak WJ, Zanchet D, Weiss S, et al. Synthesis and properties of biocompatible watersoluble silica-coated CdSe/ZnS semiconductor quantum dots. J Phys Chem B 2001; 105: 8861 71.
    • 34. Parak WJ, Pellegrino T, Plank C. Labelling of cells with quantum dots. Nanotechnology 2005; 16: R9 R25.
    • 35. Yu WW, Chang E, Drezek R, Colvin VL. Water-soluble quantum dots for biomedical applications. Biochem Biophys Res Commun 2006; 348: 781 6.
    • 36. Pathak S, Choi SK, Arnheim N, Thompson ME. Hydroxylated quantum dots as luminescent probes for in situ hybridization. J Am Chem Soc 2001; 123: 4103 4.
    • 37. Gerion D, Parak WJ, Williams SC, Zanchet D, Micheel CM, Alivisatos AP. Sorting fluorescent nanocrystals with DNA. J Am Chem Soc 2002; 124: 7070 4.
    • 38. Mitchell GP, Mirkin CA, Letsinger RL. Programmed assembly of DNA functionalized quantum dots. J Am Chem Soc 1999; 121: 8122 3.
    • 39. Willard DM, Carillo LL, Jung J, van Orden A. CdSe ZnS quantum dots as resonance energy transfer donors in a model protein-protein binding assay. Nano Lett 2001; 1: 469 74.
    • 40. Sukhanova A, Devy J, Venteo L, Kaplan H, Artemyev M, Oleinikov V, et al. Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells. Anal Biochem 2004; 324: 60 7.
    • 41. Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science 1998; 281: 2013 6.
    • 42. Pellegrino T, Manna L, Kudera S, Liedl T, Koktysh D, Rogach AL, et al. Hydrophobic nanocrystals coated with an amphiphilic polymer shell: a general route to water soluble nanocrystals. Nano Lett 2004; 4: 703 7.
    • 43. Gao X, Cui Y, Levenson RM, Chung LW, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 2004; 22: 969 76.
    • 44. Osaki F, Kanamori T, Sando S, Sera T, Aoyama Y. A quantum dot conjugated sugar ball and its cellular uptake. On the size effects of endocytosis in the subviral region. J Am Chem Soc 2004; 126: 6520 1.
    • 45. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 2002; 298: 1759 62.
    • 46. Wang YA, Li JJ, Chen H, Peng X. Stabilization of inorganic nanocrystals by organic dendrons. J Am Chem Soc 2002; 124: 2293 8.
    • 47. Pinaud F, King D, Moore HP, Weiss S. Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J Am Chem Soc 2004; 126: 6115 23.
    • 48. Kim S, Bawendi MG. Oligomeric ligands for luminescent and stable nanocrystal quantum dots. J Am Chem Soc 2003; 125: 14652 3.
    • 49. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T. Quantum dots versus organic dyes as fluorescent labels. Nat Methods 2008; 5: 763 75.
    • 50. Gao X, Chan WC, Nie S. Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding. J Biomed Opt 2002; 7: 532 7.
    • 51. Goldman ER, Balighian ED, Kuno MK, Labrenz S, Tran PT, Anderson GP, et al. Luminescent quantum dot-adaptor protein antibody conjugates for use in fluoroimmunoassays. Phys Stat Sol B 2002; 229: 407 14.
    • 52. Goldman ER, Balighian ED, Mattoussi H, Kuno MK, Mauro JM, Tran PT, et al. Avidin: a natural bridge for quantum dot antibody conjugates. J Am Chem Soc 2002; 124: 6378 82.
    • 53. Mason JN, Tomlinson ID, Rosenthal SJ, Blakely RD. Labeling cell-surface proteins via antibody quantum dot streptavidin conjugates. Methods Mol Biol 2005; 303: 35 50.
    • 54. Dahan M, Levi S, Luccardini C, Rostaing P, Riveau B, Triller A. Diffusion dynamics of glycine receptors revealed by singlequantum dot tracking. Science 2003; 302: 442 5.
    • 55. Tokumasu F, Dvorak J. Development and application of quantum dots for immunocytochemistry of human erythrocytes. J Microsc 2003; 211: 256 61.
    • 56. Rosenthal SJ, Tomlinson A, Adkins EM, Schroeter S, Adams S, Swafford L, et al. Targeting cell surface receptors with ligand-conjugated nanocrystals. J Am Chem Soc 2002; 124: 4586 94.
    • 57. Lidke DS, Nagy P, Heintzmann R, Arndt-Jovin DJ, Post JN, Grecco HE, et al. Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat Biotechnol 2004; 22: 198 203.
    • 58. Zheng J, Ghazani AA, Song Q, Mardyani S, Chan WC, Wang C. Cellular imaging and surface marker labeling of hematopoietic cells using quantum dot bioconjugates. Lab Hematol 2006; 12: 94 8.
    • 59. Parak WJ, Boudreau R, Le Gros MA, Gerion D, Zanchet D, Micheel CM, et al. Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks. Adv Mater 2002; 14: 882 5.
    • 60. Akerman ME, Chan WC, Laakkonen P, Bhatia SN, Ruoslahti E. Nanocrystal targeting in vivo. Proc Natl Acad Sci USA 2002; 99: 12617 21.
    • 61. Biju V, Itoh T, Anas A, Sujith A, Ishikawa M. Semiconductor quantum dots and metal nanoparticles: syntheses, optical properties, and biological applications. Anal Bioanal Chem 2008; 391: 2469 95.
    • 62. Mattheakis LC, Dias JM, Choi YJ, Gong J, Bruchez MP, Liu J, et al. Optical coding of mammalian cells using semiconductor quantum dots. Anal Biochem 2004; 327: 200 8.
    • 63. Rieger S, Kulkarni RP, Darcy D, Fraser SE, Koster RW. Quantum dots are powerful multipurpose vital labeling agents in zebrafish embryos. Dev Dyn 2005; 234: 670 81.
    • 64. Ferrara DE, Weiss D, Carnell PH, Vito RP, Vega D, Gao X et al. Quantitative 3D fluorescence technique for the analysis of en face preparations of arterial walls using quantum dot nanocrystals and two-photon excitation laser scanning microscopy. Am J Physiol Regul Integr Comp Physiol 2006; 290: R114 23.
    • 65. Mansson A, Sundberg M, Balaz M, Bunk R, Nicholls IA, Omling P, et al. In vitro sliding of actin filaments labelled with single quantum dots. Biochem Biophys Res Commun 2004; 314: 529 34.
    • 66. Bruchez MP. Turning all the lights on: quantum dots in cellular assays. Curr Opin Chem Biol 2005; 9: 533 7.
    • 67. Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A, et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 2004; 22: 93 7.
    • 68. Takeda M, Tada H, Higuchi H, Kobayashi Y, Kobayashi M, Sakurai Y, et al. In vivo single molecular imaging and sentinel node navigation by nanotechnology for molecular targeting drug-delivery systems and tailor-made medicine. Breast Cancer 2008; 15: 145 52.
    • 69. Ciarlo M, Russo P, Cesario A, Ramella S, Baio G, Neumaier CE, et al. Use of the semiconductor nanotechnologies 'quantum dots' for in vivo cancer imaging. Recent Pat Anticancer Drug Discov 2009; 4: 207 15.
    • 70. Ballou B, Ernst LA, Andreko S, Fitzpatrick JA, Lagerholm BC, Waggoner AS, et al. Imaging vasculature and lymphatic flow in mice using quantum dots. Methods Mol Biol 2009; 574: 63 74.
    • 71. Kang WJ, Chae JR, Cho YL, Lee JD, Kim S. Multiplex imaging of single tumor cells using quantum-dot-conjugated aptamers. Small 2009; 5: 2519 22.
    • 72. Singhal S, Nie S, Wang MD. Nanotechnology applications in surgical oncology. Annu Rev Med 2010; 61: 359 73.
    • 73. Mahmoud W, Sukhanova A, Oleinikov V, Rakovich YP, Donegan JF, Pluot M, et al. Emerging applications of fluorescent nanocrystals quantum dots for micrometastases detection. Proteomics 2009; 10: 700 16.
    • 74. Pinkel D, Straume T, Gray JW. Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci USA 1986; 83: 2934 8.
    • 75. Ekong R, Wolfe J. Advances in fluorescence in situ hybridization. Curr Opin Biotechnol 1998; 9: 19 24.
    • 76. Levsky JM, Singer RH. Fluorescence in situ hybridization: past, present and future. J Cell Sci 2003; 116: 2833 8.
    • 77. Xiao Y, Barker PE. Semiconductor nanocrystal probes for human metaphase chromosomes. Nucleic Acids Res 2004; 32: e28.
    • 78. Xiao Y, Telford WG, Ball JC, Locascio LE, Barker PE. Semiconductor nanocrystal conjugates, FISH and pH. Nat Methods 2005; 2: 723.
    • 79. Xiao Y, Barker PE. Semiconductor nanocrystal probes for human chromosomes and DNA. Minerva Biotec 2004; 16: 281 8.
    • 80. Chan P, Yuen T, Ruf F, Gonzalez-Maeso J, Sealfon SC. Method for multiplex cellular detection of mRNAs using quantum dot fluorescent in situ hybridization. Nucleic Acids Res 2005; 33: 1 8.
    • 81. Wu SM, Zhao X, Zhang ZL, Xie HY, Tian ZQ, Peng J, et al. Quantum-dot-labeled DNA probes for fluorescence in situ hybridization (FISH) in the microorganism Escherichia coli. Chem Phys Chem 2006; 7: 1062 7.
    • 82. Muller F, Houben A, Barker PE, Xiao Y, Kas JA, Melzer M. Quantum dots a versatile tool in plant science? J Nanobiotechnol 2006; 4: 5.
    • 83. Tholouli E, Hoyland JA, Di Vizio D, O'Connell F, Macdermott SA, Twomey D, et al. Imaging of multiple mRNA targets using quantum dot based in situ hybridization and spectral deconvolution in clinical biopsies. Biochem Biophys Res Commun 2006; 348: 628 36.
    • 84. Bentolila LA, Weiss S. Single-step multicolor fluorescence in situ hybridization using semiconductor quantum dot DNA conjugates. Cell Biochem Biophys 2006; 45: 59 70.
    • 85. Jiang Z, Li R, Todd NW, Stass SA, Jiang F. Detecting genomic aberrations by fluorescence in situ hybridization with quantum dots-labeled probes. J Nanosci Nanotechnol 2007; 7: 4254 9.
    • 86. Knoll JH. Human metaphase chromosome FISH using quantum dot conjugates. In: Bruchez MP, Hotz CZ, eds. Quantum dots applications in biology, vol. 374. Totowa, NJ: Humana Press; 2007, p. 55 66.
    • 87. Ma L, Wu SM, Huang J, Ding Y, Pang DW, Li L. Fluorescence in situ hybridization (FISH) on maize metaphase chromosomes with quantum dot-labeled DNA conjugates. Chromosoma 2008; 117: 181 17.
    • 88. Choi Y, Kim HP, Hong SM, Ryu JY, Han SJ, Song R. In situ visualization of gene expression using polymer-coated quantum-dot DNA conjugates. Small 2009; 5: 2085 91.
    • 89. Muller S, Cremer M, Neusser M, Grasser F, Cremer T. A technical note on quantum dots for multi-color fluorescence in situ hybridization. Cytogenet Genome Res 2009; 124: 351 9.
    • 90. Ioannou D, Tempest HG, Skinner BM, Thornhill AR, Ellis M, Griffin DK. Quantum dots as new-generation fluorochromes for FISH: an appraisal. Chromosome Res 2009; 17: 519 30.
    • 91. Finch KA, Fonseka KG, Abogrein A, Ioannou D, Handyside AH, Thornhill AR, et al. Nuclear organization in human sperm: preliminary evidence for altered sex chromosome centromere position in infertile males. Hum Reprod 2008; 23: 1263 70.
    • 92. Finch KA, Fonseka G, Ioannou D, Hickson N, Barclay Z, Chatzimeletiou K, et al. Nuclear organisation in totipotent human nuclei and its relationship to chromosomal abnormality. J Cell Sci 2008; 121: 655 63.
    • 93. Masabanda JS, Burt DW, O'Brien PC, Vignal A, Fillon V, Walsh PS, et al. Molecular cytogenetic definition of the chicken genome: the first complete avian karyotype. Genetics 2004; 166: 1367 73.
    • 94. Robertson LB, Griffin DK, Tempest HG, Skinner BM. The evolution of the avian genome as revealed by comparative molecular cytogenetics. Cytogenet Genome Res 2007; 117: 64 77.
    • 95. Skinner BM, Volker M, Ellis M, Griffin DK. An appraisal of nuclear organisation in interphase embryonic fibroblasts of chicken, turkey and duck. Cytogenet Genome Res 2009; 126: 156 64.
    • 96. Griffin DK, Haberman F, Masabanda J, O'Brien PCM, Bagga M, Smith J, et al. Micro-and macro chromosome painting probes generated by flow cytometry and chromosome microdissection: tools for mapping the chicken genome. Cytogenet Cell Genet 1999; 87: 278 81.
    • 97. Campos-Ramos R, Harvey SC, Masabanda JS, Carrasco LA, Griffin DK, McAndrew BJ, et al. Identification of putative sex chromosomes in the blue tilapia, Oreochromis aureus, through synaptonemal complex and FISH analysis. Genetica 2001; 111: 143 53.
    • 98. Harvey SC, Masabanda J, Carrasco LA, Bromage NR, Penman DJ, Griffin DK. Molecular-cytogenetic analysis reveals sequence differences between the sex chromosomes of Oreochromis niloticus: evidence for an early stage of sex-chromosome differentiation. Cytogenet Genome Res 2002; 97: 76 80.
    • 99. Griffin DK, Harvey SC, Campos-Ramos R, Ayling LJ, Bromage NR, Masabanda JS, et al. Early origins of the X and Y chromosomes: lessons from tilapia. Cytogenet Genome Res 2002; 99: 157 63.
    • 100. Bruchez M. Quantum dots for ultra-sensitive multicolor detection of proteins and genes. In: Jong H, Tanke H, Fransz P, eds. 16th International Chromosome Conference (16th ICC). Amsterdam, the Netherlands: Springer; 2007, pp. 1 108.
    • 101. Murray CB, Kagan CR, Bawendi M. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci 2000; 30: 545 610.
    • 102. Yao G, Wang L, Wu Y, Smith J, Xu J, Zhao W, et al. FloDots: luminescent nanoparticles. Anal Bioanal Chem 2006; 385: 518 24.
    • 103. Choi J, Burns AA, Williams RM, Zhou Z, Flesken-Nikitin A, Zipfel WR, et al. Core-shell silica nanoparticles as fluorescent labels for nanomedicine. J Biomed Opt 2007; 12: 064007.
    • *Darren K. Griffin Department of Biosciences University of Kent Canterbury CT2 7NJ, UK Tel: 44 (0) 1227 823022 Fax: 44 (0) 1227 763912 Email:
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article