LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Svahn, K. Stefan; Göransson, Ulf; El-Seedi, Hesham; Bohlin, Lars; Larsson, D.G. Joakim; Olsen, Björn; Chryssanthou, Erja (2012)
Publisher: Co-Action Publishing
Journal: Infection Ecology & Epidemiology
Languages: English
Types: Article
Subjects: Aspergillus fumigatus, gliotoxin, antimicrobial activity, filamentous fungi, gliotoxin, Original Article, secondary metabolites, RC109-216, Infectious and parasitic diseases, Aspergillus
Background: Filamentous fungi are well known for their production of substances with antimicrobial activities, several of which have formed the basis for the development of new clinically important antimicrobial agents. Recently, environments polluted with extraordinarily high levels of antibiotics have been documented, leading to strong selection pressure on local sentinel bacterial communities. In such microbial ecosystems, where multidrug-resistant bacteria are likely to thrive, it is possible that certain fungal antibiotics have become less efficient, thus encouraging alternative strategies for fungi to compete with bacteria. Methods: In this study, sediment of a highly antibiotic-contaminated Indian river was sampled in order to investigate the presence of cultivable filamentous fungi and their ability to produce substances with antimicrobial activity. Results: Sixty one strains of filamentous fungi, predominantly various Aspergillus spp. were identified. The majority of the Aspergillus strains displayed antimicrobial activity against methicillin-resistant Staphylococcus aureus, extended-spectrum beta-lactamase-producing Escherichia coli, vancomycin-resistant Enterococcus faecalis and Candida albicans. Bioassay-guided isolation of the secondary metabolites of A. fumigatus led to the identification of gliotoxin. Conclusion: This study demonstrated proof of principle of using bioassay-guided isolation for finding bioactive moleculesKeywords: secondary metabolites; Aspergillus; gliotoxin(Published: 24 May 2012)Citation: Infection Ecology and Epidemiology 2012, 2: 11591 - http://dx.doi.org/10.3402/iee.v2i0.11591

Share - Bookmark

Cite this article