Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Andreae, Meinrat O.; Froelich, Philip N. (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Arsenic, antimony, and germanium species concentrations have been determined from fivehydrographic stations along the central axis of the Baltic Sea from the Bornholm Basin to theGulf of Finland. Arsenic and antimony concentrations are lower than in the open oceans and inmost rivers. In the oxic waters, the pentavalent species of As and Sb predominate, while in theanoxic basins, the distribution shifts to the trivalent species and possibly some sulfo-complexes.Methylated arsenic species make up a large fraction of dissolved As in the surface waters, andmethylated species of As, Sb, and Ge are detectable throughout the water column. Germanicacid concentrations are about ten times higher than in the ocean and much higher than can beaccounted for by Ruvial input. The vertical distributions of arsenic, antimony, and germaniumwithin the Baltic Sea are controlled by biogeochemical cycling, involving biogenic uptake,particulate scavenging and partial regeneration. A mass balance including river and atmosphericinputs, exchange with the Atlantic through the Belt Sea, and removal by sediment depositionsuggests that anthropogenic inputs make a significant contribution to the budgets of all threeelements, with atmospheric fluxes dominating the input of Ge to the Baltic.DOI: 10.1111/j.1600-0889.1984.tb00232.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Andreae, M. 0. 1977. Determination of arsenic species in natural wsters. Anal. Chem. 49,820-823.
    • Andreae, M. 0. 1978. Distribution and speciation of arsenic in natural waters and marine algae. Deep-sea Res. 25, 39 1-402.
    • Andreae, M. 0. 1979. Arsenic speciation in seawater and interstitial waters: the influence of biological-chemical interactions on the chemistry of a trace element. Limnol. Uceanogr. 24,440-452.
    • Andreae, M. 0. 1983a. Arsenic (by hydride generation/AAS). Antimony (by hydride generation/AAS). Germanium (by hydride generation/AAS). In Methods of seawater analysis (eds. K. Grasshoff, M. Ehrhardt and K. Kremling). Weinheim: Verlag Chemie, 2nd edition. Chapters 10.6-10.6.8, 218-236.
    • Andreae, M. 0. 1983b. The determination of the chemical species of some of the “hydride elements” (arsenic, antimony, tin, and germanium) in seawater: methodology and results. In Trace metals in sea water (eds. C. S . Wong, E. Boyle, K. W. Bruland, J. D. Burton and E. D. Goldberg). New York: Plenum, 1-19.
    • Andreae, M. 0. and Froelich, P. N. 1981. Determination of germanium in natural waters by graphite furnace atomic absorption spectrometry with hydride generation. Anal. Chem. 53, 287-291.
    • Andreae, M. 0. and Klumpp, D. W. 1979. Arsenic uptake and metabolism by marine phytoplankton. Environ. Sci. Technol. 13, 738-741.
    • Andreae, M. O., Asmode, J.-F., Foster, P. and Van't dack, L. 1981. Determination of antimony(III), antimony(V), and methylantimony species in natural waters by atomic absorption spectrometry with hydride generation. Anal. Chem. 53, 1766-177 1.
    • Andreae, M. O., Byrd, J. T. and Froelich, P. N. 1983. Arsenic, antimony, germanium, and tin in the Tejo Estuary, Portugal: modeling a polluted estuary. Environ. Sci. Technol. 17, 73 1-737.
    • Bertine, K. K. and Lee, D. S. 1983. Antimony content and speciation in the water column and interstitial waters of Saanich Inlet. In Trace metals in sea water (eds. C. S . Wong, E. Boyle, K. W. Bruland, J. D. Burton and E. D. Goldberg). New York: Plenum, 21-38.
    • Bostrom, K., Burman, J.-0. and Ingri, J. 1983. A geochemical mass balance for the Baltic. Ecol. Bull. (Stockholm)35,39-58.
    • Brewer, P. G., Spencer, D. W. and Robertson, E. D. 1972. Trace element profiles from the GEOSECS I1 test station in the Sargasso Sea. Earth Planet. Sci. Lett. 16, 1 1 1-1 16.
    • Briggs, J. C. and Fickes, J. F. 1977. Quality of rivers of the United States, 1975 Water Year: Based on the National Stream Quality Accounting Network (NASQAN). RestodVirginia: U.S. Geological Survey, Report 78-200.
    • Burton, J. D., Maher, W. A. and Statham, P. J. 1983. Some recent measurements of trace metals in Atlantic Ocean waters. In Trace metals in sea water (eds. C. S . Wong, E. Boyle, K. W. Bruland, J. D. Burton and E. D. Goldberg). New York: Plenum, 4.15426.
    • Byrd, J. T. and Andreae, M. 0. 1982. Tin and methyltin species in seawater: concentration and fluxes. Science 218,565-569.
    • Carpenter, 8.,Peterson, M. L. and Jahnke, R. A. 1978. Sources, sinks and cycling of arsenic in the Puget Sound region. In Estuarine interactions fed. M. L. Wiley). New York: Academic, 4 5 9 4 8 0 .
    • Cotton, F. A. and Wilkenson, G . 1972. Inorganic chemistry. New York: Wiley.
    • Crecelius, E. A., Bothner, M. H. and Carpenter, R. 1975. Geochemistries of As, Sb, Hg and related elements in the sediments of Puget Sound. Environ. Sci. Technol. 9,325-333.
    • Edmonds, J. S. and Francesconi, K. A. 1981. Arsenosugars from brown kelp (Ecklonia radiata) as intermediates in cycling of arsenic in a marine ecosystem. Nature 289, 602-604.
    • Erlenkeuser, H., Suess, E. and Willkomm, H. 1974. Industrialization affects heavy metal and carbon isotope concentrations in recent Baltic sediments. Geochim. Cosmochim. Acta 38,823-842.
    • Fonselius, S . 1981. Oxygen and hydrogen sulphide conditions in the Baltic Sea. Marine Pollut. Bull. 12, 187- 194.
    • Froelich, P. N. and Andreae, M. 0. 1981. The marine geochemistry of germanium: ekasilicon. Science 213, 205-207.
    • Froelich, P. N., Hambrick, G. A. and Andrege, M. 0. 1983. Geochemistry of inorganic and methyl germanium species in three estuaries. Eos. 64, 715.
    • Grasshoff, K. 1975. The hydrochemistry of landlocked basins and fjords. In Chemical oceanography (eds. J. P. Riley and G. Skirrow). New York: Academic, 2nd edition. Vol. 2, chapter 15.
    • Hallberg, R. 0. 1979. Heavy metals in the sediments of the Gulf of Bothnia. Ambio 8,265-269.
    • Hambrick, G. A., Froelich, P. N., Andreae, M. 0. and Lewis, B. L. 1984. Determination of methylgermanium species in natural waters by graphite furnace atomic absorption spectrometry with hydride generation. Anal. Chem. 56, in press.
    • Kantin, R. 1983. Chemical speciation of antimony in marine algae. Limnol. Uceanogr. 28, 165-168.
    • Kremling, K. 1983. The behaviour of Zn, Cd, Cu, Ni, Co, Fe and Mn in anoxic Baltic waters. Mar. Chem. 13,87-108.
    • Kullenberg, G. 1981. The Baltic: a regional sea marine pollution case study. Mar. Pollut. Bull. 12, 179-182.
    • Kullenberg, G. and Jacobsen, T. S. 1981. The Baltic Sea: an outline of its physical oceanography. Mar. Pollut. Bull. 12, 183-186.
    • McBride, B. C., Merilees, H., Cullen, W. R. and Pickett, W. 1978. Anaerobic and aerobic alkylation of arsenic. A C S Symp. Ser. 82,94-I 15.
    • National Academy of Sciences. 1981. Atmosphere-biosphere interactions: toward a better understanding of the ecological consequences of fossil fuel combustion. Washington, D.C.: National Academy Press.
    • Nehring, D. and Francke, E. 1983. Die hydrographischchemischen Bedingungen in der Ostsee im Jahre 1980. Fisch.-Forsch. 22, in press.
    • Pacyna, J. M. 1982. Trace element emission from anthropogenic sources in Europe. Lillestrem/Norway : Norwegian Institute for Air Research, NILU 2478 1 .
    • Peterson, M. L. and Carpenter, R. 1983. Biogeochemical processes affecting total arsenic and arsenic species distributions in an intermittently anoxic fjord. Mar. Chem. 12,295-321.
    • Rahn, K. A. 1976. The chemical composition of the atmospheric aerosol. Technical Report, Graduate School of Oceanography, University of Rhode Island, Kingston.
    • Rodhe, H., Soderlund, R. and Ekstedt, J. 1980. Deposition of airborne pollutants on the Baltic. Ambio 9, 168-173.
    • Sanders, J. G. 1979. Microbial r6le in the demethylation and oxidation of methylated arsenicals in seawater. Chemosphere 8, 135-137.
    • Sanders, J. G. and Windom. H. L. 1980. The uptake and reduction of arsenic by marine algae. Estuarine Coastal Mar. Sci. 10, 555-567.
    • Slinn, W. G. N., Hasse, L., Hicks, B. B., Hogan, A. W.. Lal, D., Liss, P. S., Munnich, K. O., Sehmel, G. A. and Vittori, 0. 1978. Some aspects of the transfer oi atmospheric trace constituents past the air-sea interface. Atmos. Environ. 12, 2055-2087.
    • Smith, R. D., Campbell. J. A. and Nielson, K. K. 1979. Concentration dependence upon particle size of volatilized elements in fly ash. Environ. Sci. Technol. 13,553-558.
    • van der Sloot, H. A., Massee, R. and Wals, G. D. 1977. Methods for the determination of selenium, arsenic and antimony species in natural waters and their application in an environmental study. In: Nuclear methods in environmental and energy research. Washington, D.C.: U.S. Dept. of Energy, C O N F - 7 7 1 0 7 2 , 5 6 6 5 7 5 .
    • Walsenchuk, D. G. 1978. The budget and geochemistry of arsenic in a continental shelf environment. Mar. Chem. 7,39-52.
    • Wilson, C. L. 1980. Coal: bridge to thefuture. Report of the World Coal Sludy. Cambridge/Mass.: Ballinger.
    • Wong, P. T. S., Chau, Y. K., Luxon, L. and Bengert, G. A. 1977. Methylation of arsenic in the aquatic environment. In Truce substances in environmental health-XI (ed. D. D. Hemphill). Columbia: University or Missouri, 100-106.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article

Collected from