LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Tasambay-Salazar, Miguel; OrtizBeviá, María José; Alvarez-García, Francisco J.; Ruiz de Elvira, Antonio M. (2015)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article
Subjects: predictors, Meteorology. Climatology, models, seasonal, GC1-1581, predictability, tropical, QC851-999, Niño3.4, barrier, Climate Dynamics, Oceanography, stochastic, extratropical
The predictability of the Niño3.4 region, especially the skill loss for lead times longer than two seasons, is the target of this study. We use an equatorial version of a seasonal statistical model to identify a seasonal predictability barrier, the skill loss of the predictions which target the summer or autumn Niño3.4 Index value, relative to those which target the winter or spring values. The variables of the basic model include an index for the subsurface anomalous state and another for the atmospheric variability. We develop different versions of the model, substituting some of its variables with others that contain tropical or extratropical information, produce a number of hindcasts with these models using two different prediction schemes, and crossvalidate them. The analysis shows that in winter and spring some skill improvements can be gained with the introduction of a particular variable or the other. However, these improvements are similar to the ones obtained using a forecast scheme that incorporates the complete solution of the stochastic model. Moreover, useful summer and autumn hindcast skill values are scored only with the model versions that include a representation of the extratropical feedbacks among its variables. Higher scores correspond to models that incorporate an index built from atmospheric temperature anomalies integrated from the surface up to the mid-troposphere, south of 20°S.Keywords: Niño3.4, predictability, barrier, predictors, tropical, extratropical, seasonal, stochastic, models(Published: 18 September 2015)Citation: Tellus A 2015, 67, 27457, http://dx.doi.org/10.3402/tellusa.v67.27457
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Anderson, B. T. 2004. Investigation of a large-scale mode of Ocean Atmosphere variability and its relationship to Tropical Pacific sea surface temperature anomalies. J. Clim. 17, 4080 4098. DOI: http://dx.doi.org/10.1175/1520-0442(2004)017
    • Ballester, J., Rodriguez-Arias, M. A. and Rodo, X. 2011. A new extratropical tracer describing the role of the Western Pacific in the onset of El Nin˜ o: implications for ENSO understanding and forecasting. J. Clim. 24, 1425 1437. DOI: http://dx.doi.org/ 10.1175/2010JCLI3619.1
    • Barnston, A. G., Tippett, M. K., L'Heureux, M. L., Li, S. and DeWitt, D. 2012. Skill of real-time seasonal ENSO model predictions during 2002 11: is our capability increasing? Bull. Am. Meteorol. Soc. 93, 631 651. DOI: http://dx.doi.org/10.1175/ BAMS-D-11-00111.1
    • Blumenthal, M. 1991. Predictability of a coupled ocean atmosphere model. J. Clim. 4, 766 784. DOI: http://dx.doi.org/ 10.1175/1520-0442(1991)004
    • Boschat, G., Terray, P. and Masson, S. 2013. Extratropical forcing of ENSO. Geophys. Res. Lett. 40, 1605 1611. DOI: http://dx.doi. org/10.1002/grl.50229
    • Burgers, G., Jin, F. and Oldenborgh, G. 2005. The simplest ENSO recharge oscillator. Geophys. Res. Lett. 32, L13706. DOI: http:// dx.doi.org/10.1029/2005GL022951
    • Chen, D. K., Zebiak, S. D., Cane, M. A. and Busalacchi, A. J. 1997. Initialization and predictability of a coupled ENSO forecast model. Mon. Weather Rev. 125, 733 788. DOI: http://dx. doi.org/10.1175/1520-0493(1997)125
    • Chiang, J. and Vimont, D. 2004. Analogous Pacific and Atlantic meridional modes of tropical-atmosphere ocean variability. J. Clim. 17, 4143 4158. DOI: http://dx.doi.org/10.1175/JCLI4953.1
    • Clarke, A. J. and Van Gorder, S. 2003. Improving El Nin˜ o prediction using a spacetime integration of Indo-Pacific winds and equatorial Pacific upper ocean heat content. Geophys. Res. Lett. 30(7), 1399. DOI: http://dx.doi.org/10.1029/2002GL016673
    • Dayan, H., Vialard, J., Izumo, T. and Lengaigne, M. 2014. Does sea surface temperature outside the tropical Pacific contribute to enhanced ENSO predictability? Clim. Dynam. 43, 1311 1325. DOI: http://dx.doi.org/10.1007/s00382-013-1946-y
    • Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P. and co-authors. 2011. The ERA-Interim reanalysis configuration and performance of the data assimilation system. Q. J. Roy. Meteorol. Soc. 137, 553 597. DOI: http://dx.doi.org/10.1002/qj. 828
    • Dominiak, S. and Terray, P. 2005. Improvement of ENSO predictions using a linear regression model with a Southern Indian Ocean sea surface temperature predictor. Geophys. Res. Lett. 32, L18702. DOI: http://dx.doi.org/10.102972005GL023153
    • Enfield, D. B., Mestas, A., Mayer, D. S. and Cid Serrano, L. 1999. How ubiquitous is the dipole relationship in tropical Atlantic sea surface temperatures? J. Geophys. Res. 104, 7841 7848. DOI: http://dx.doi.org/10.1029/199JC900036
    • Fisher, R. A. 1921. On the ''Probable Error'' of a coefficient of correlation deduced from a small sample. Metron. 1, 1 32.
    • Ham, Y. G., Kug, J. S., Park, J. Y. and Jin, F. F. 2013. Sea surface temperature in the North Tropical Atlantic as a trigger for El Nin˜ o-Southern Oscillation events. Nat. Geosci. Lett. 6, 112 114. DOI: http://dx.doi.org/10.1038/ngeo1686
    • Hasselmann, K. 1988. PIPs and POPs: the reduction of complex dynamical systems using Principal Interaction and Oscillation Patterns. J. Geophys. Res. 93, 11015 11021. DOI: http:// dx.doi.org/10.1029/JD093iD09p11015
    • Hollingsworth, A., Arpe, K., Tiedke, M., Capaldo, M. and Savijaervi, H. 1980. The performance of a medium range forecast model in winter: impact of physical parameterization. Mon. Weather Rev. 108, 1736 1773. DOI: http://dx.doi.org/10. 1175/1520-0493(1980)108
    • Horii, T., Ueki, I. and Hanawa, K. 2012. Breakdown of ENSO predictors in the 2000s: decadal changes of recharge/dischargeSST phase relation and atmospheric intraseasonal forcing. Geophys. Res. Lett. 39, L10707. DOI: http://dx.doi.org/10.1029/ 2012Gl051740
    • Izumo, T., Vialard, J., Lengaigne, M., Montegut, C. B., Behera, S. K. and co-authors. 2010. Influence of the state of the Indian Ocean Dipole on the following year's El Nin˜ o. Nat. Geosci. 3, 168 172. DOI: http://dx.doi.org/10.1038/ngeo760
    • Jansen, M. F., Dommenget, D. and Keenlyside, N. 2009. Tropical atmosphere ocean interactions in a conceptual framework. J. Clim. 22, 550 567. DOI: http://dx.doi.org/10.1175/2008JCLI. 2243.1
    • Jin, E. K. and Kinter, J. L. 2009. Characteristics of tropical Pacific SST predictability in coupled GCM forecast using the NCEP CFS. Clim. Dynam. 82, 675 691. DOI: http://dx.doi.org/ 10.1007/s00382-008-0418-2
    • Jin, F. F. 1997. An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J. Atmos. Sci. 54(7), 811 829. DOI: http://dx.doi.org/10.1175/1520-0469(1997)054
    • Johnson, S., Batisti, D. and Sarachick, E. 2000. Empirically derived Markov Models and prediction of Tropical Pacific sea surface temperature anomalies. J. Clim. 13, 3 17. DOI: http://dx.doi.org/ 10.1175/1520-0442(2000)013B3327:SIAEDM 2.0.CO;2
    • Karnauskas, K. B., Seager, R., Kaplan, A., Kushnir, Y. and Cane, M. A. 2009. Observed strengthening of the zonal sea surface temperature gradient across the Equatorial Pacific Ocean. J. Clim. 22, 4316 4321. DOI: http://dx.doi.org/10.1175/2009JCLI 2936.1
    • Keenlyside, N. S., Ding, H. and Latif, M. 2013. Potential of equatorial atlantic variability to enhance El Nin˜ o Predictions. Geophys. Res. Lett. 40, 2278 2289. DOI: http://dx.doi.org/10. 1002/grl.50362
    • Kirtman, B., Anderson, A., Kang, I.-S., Scaife, A. and Smith, D. 2013. Prediction from weeks to decades. In: Climate Science for serving Society (eds. G. R. Asnar and J. W. Hurrell), Springer, Berlin, pp. 205 235.
    • Kirtman, B. P. 1997. Oceanic Rossby wave dynamics and the ENSO period in a coupled model. J. Clim. 10, 1690 1705. DOI: http://dx.doi.org/10.1175/1520-0442(1997)010
    • Luo, J. J., Zhang, R., Swadhin, K., Behera, Y., Masumoto, F. F. and co-authors. 2010. Interaction between El Nin˜ o and extreme Indian Ocean Dipole. J. Clim. 23, 726 742. DOI: http://dx.doi. org/10.1175/2009JCLI3104.1
    • McPhaden, M. J., Zhang, X., Hendon, H. H. and Wheeler, M. C. 2006. Large scale dynamics and MJO forcing of ENSO variability. Geophys. Res. Lett. 13, L16702. DOI: http://dx.doi.org/10.1029/ 2006GL026786
    • Mears, C. A. and Wentz, F. J. 2009. Construction of the remote sensing systems v3.2 atmospheric temperature records from the MSV and AMSV microwave sounders. J. Atmos. Ocean. Technol. 26, 1040 1056. DOI: http://dx.doi.org/10.1175/2008JTECHA1176.1
    • Meinen, C. S. and McPhaden, M. J. 2000. Observations of Warm Water Volume changes in the Equatorial Pacific and their relationship to EL Ni n˜o and la Nin˜ a. J. Clim. 13, 3551 3559. DOI: http://dx.doi.org/10.1175/1520-0442(2000) 013 B3551:OOWWVC 2.0.CO;2
    • Miller, A. J., Cayan, D., Barnett, T. P., Graham, N. E. and Oberhuber, J. M. 1994. The 1976 1977 climate shift of the Pacific ocean. Oceanography. 7, 21 26. DOI: http://dx.doi.org/ 10.5670/oceanog.1994.11
    • Moore, A. M. and Kleeman, R. 1996. The dynamics of error growth and predictability in a coupled model of ENSO. Q. J. Roy. Meteorol. Soc. 122, 1405 1446. DOI: http://dx.doi.org/10. 1002/qj.49712253409
    • Ortı´ zBevia´ , M. J., Alvarez-Garcı´ a, F. J., Ruiz de Elvira, A. M. and Liguori, G. 2012. The western Mediterranean summer variability and its feedbacks. Clim. Dynam. 39, 3103 3120. DOI: http://dx.doi.org/10.1007/s00382-012-1400-s
    • Penland, C. and Magorian, M. 1993. Prediction of Nin˜ o3 sea surface temperature anomalies using linear inverse modeling. J. Clim. 6, 1067 1176. DOI: http://dx.doi.org/10.1175/1520- 0442(1993)006
    • Penland, C. and Matrosova, L. 1998. Prediction of tropical Atlantic sea surface temperatures using linear inverse modeling. J. Clim. 11, 483 496. DOI: http://dx.doi.org/10.1175/1520-0442 (1998)011
    • Penland, C. and Sardeshmukh, P. D. 1995. The optimal growth of tropical sea surface anomalies. J. Clim. 8, 1999 2024. DOI: http://dx.doi.org/10.1175/1520-0442(1995)018
    • Rodriguez-Fonseca, B., Polo, I., Garcı´ a-Serrano, J., Losada, T., Mohino, E. and co-authors. 2009. Are Atlantic Nin˜ os enhancing Pacific ENSO events in recent decades? Geophys. Res. Lett. 36, L20705. DOI: http://dx.doi.org/10.1029/20099GL040098
    • Saji, N. H., Goswami, B. N., Vinachandran, P. N. and Yamagata, T. 1999. A dipole mode in the tropical Indian Ocean. Nature. 401, 360 363.
    • Stepanov, V. N. 2009. Modeling of El Nin˜ o events using a simple model. Oceanology. 3, 310 319. DOI: http://dx.doi.org/10.1134/ S0001437009030023
    • Suarez, M. J. and Schopf, P. S. 1988. A delayed action oscillator for ENSO. J. Atmos. Sci. 45, 3283 3287. DOI: http://dx.doi.org/ 10.117571520-0469(1988)045
    • Tasambay-Salazar, M., OrtizBevi a´, M. J., Alvarez-Garcı´ a, F. and RuizdeElvira, A. 2015. An estimation of ENSO predictability from its seasonal teleconnections. Theor. Appl. Climatol. DOI: http://dx.doi.org/10.1007/s00704-0.15-1546-3
    • Terray, P. 2011. Southern Hemisphere extra-tropical forcing: a new paradigm for El Nin˜ o -Southern Oscillation. Clim. Dynam. 36, 2171 2199. DOI: http://dx.doi.org/10.1007/500382- GL0-6825-Z
    • Trenberth, K. E. 1984. Signal versus noise in the Southern Oscillation. Mon. Weather. Rev. 112, 326, 332. DOI: http://dx. doi.org/10.1175/1520-0493(1984)112
    • Trenberth, K. E. 1997. The definition of El Nin˜ o. Bull. Am. Meteorol. Soc. 78, 2771 2777. DOI: http://dx.doi.org/10.1175/ 1520-0477
    • Van den Dool, H. M. and Toth, Z. 1991. Why do forecasts for 'near normal' often fail? Weather. Forecast. 6, 76 85. DOI: http://dx.doi.org/10.1175/1520-0434(1991)006
    • Van Loon, H. and Jenne, D. 1972. Zonal harmonic standing waves in the Southern Hemisphere. J. Geophys. Res. 77, 992 1103. DOI: http://dx.doi.org/10.1029/JC077i006p00992
    • Venegas, S. A., Drinkwater, M. and Shaffer, G. 2001. Coupled oscillations in Antarctic sea ice and atmosphere in the South Pacific sector. Geophys. Res. Lett. 28, 3301 3304. DOI: http:// dx.doi.org/10.1029/2001GL12991
    • Vimont, D. J., Alexander, M. and Fontaine, A. 2009. Midlatitude excitation of tropical variability in the Pacific: the role of thermodynamic coupling and seasonality. J. Clim. 22, 518 534. DOI: http://dx.doi.org/10.1175/2008JCLI2220.1
    • Vimont, D. J., Wallace, J. M. and Battisti, D. S. 2003. The seasonal footprinting mechanism in the Pacific: implications for ENSO. J. Clim. 16, 2668 2675. DOI: http://dx.doi.org/10.1175/1520- 0442(2003)016
    • Von Storch, H., Burger, G., Schnur, R. and von Storch, J.-S. 1995. Principal Oscillation Patterns: a review. J. Clim. 8, 377 400. DOI: http://dx.doi.org/10.1175/1520-0442(1995)008.
    • Wang, Y., Lupo, A. R. and Qin, J. 2013. A response in the ENSO cycle to an extratropical forcing mechanism during El Nin˜ o to La Nin˜ a transition. Tellus A. 65, 22431. DOI: http://dx.doi.org/ 10.3402/tellusa.V65i0.22431
    • White, W. S., Chen, S. C., Allan, R. J. and Stone, R. C. 2002. Positive feedback between the Antarctic Circumpolar Wave and the global El Nino- Southern Oscillation wave. J. Geophys. Res. 107, 29 1. DOI: http://dx.doi.org/10.1029/200JC00581
    • Wilks, S. S. 1962. Mathematical Statistics. Wiley, New York.
    • Wu, R., Kirtman, B. P. and Van Den Dool, H. 2009. An analysis of ENSO prediction skill in CFS retrospective forecast. J. Clim. 22, 1801 1817. DOI: http://dx.doi.org/10.1175/2008JCLI2565.1
    • Yu, J. Y. and Kim, S. T. 2013. Identifying the types of major El Nin˜ o Events since 1870. Int. J. Climatol. 33, 2105 2112. DOI: http://dx.doi.org/10.1002/joc.3575
    • Yuan, X. and Li, C. 2008. Climate modes in southern high latitudes and their impacts on Antarctic sea ice. J. Geophys. Res. 113, C06S91. DOI: http://dx.doi.org/10.1029/2006JC004067
    • Zhang, H., Clement, A. and Dinezio, P. 2014. The South Pacific meridional mode: a mechanism for ENSO-like variability. J. Clim. 27, 769 783. DOI: http://dx.doi.org/10.1175/JCLI-D13-00082.1
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article