LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Wortman, E.; Tomaszewski, T.; Waldner, P.; Schleppi, P.; Thimonier, A.; Eugster, W.; Buchmann, N.; Sievering, H. (2012)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects: atmospheric nitrogen deposition, carbon storage, Meteorology. Climatology, QC851-999, photosynthetic efficiency, fluorometry, atmospheric chemistry; biogeochemical cycle; nitorgen depsotion, atmospheric nitrogen deposition, fluorometry, canopy nitrogen uptake, photosynthetic efficiency, carbon storage, canopy nitrogen uptake
Portable chlorophyll fluorometry measurements, providing plant photosynthetic efficiency (PE) data, were carried out at two contrasting Swiss forests experiencing high nitrogen (N) deposition. Fluorometry data were obtained in conjunction with controlled N treatment applications within forest canopies to more realistically simulate deposition of plant-available N species. At the high N deposition Novaggio oak forest, growing season canopy N applications caused increases in PE and other photosynthetic measures. Similar N applications at the Lägeren mixed beech and spruce forest site indicated a possible PE decrease in beech leaves and no effect on spruce needles. N is considered a growth-limiting nutrient in temperate environments where low to moderate N deposition can benefit forest growth; however, high N deposition can have negative effects on forest health and growth due to nutrient imbalances. We conclude that the growth effect dominates at both sites, thereby increasing the potential for carbon sequestration. We found clear evidence of direct leaf-level canopy N uptake in combination with increased PE at the Novaggio oak forest site and no definitive evidence of negative N effects at the Lägeren site. We conclude that PE measurements with chlorophyll fluorometry is a useful tool to quantify N and carbon exchange aspects of deciduous forest dynamics.Keywords: atmospheric nitrogen deposition, fluorometry, canopy nitrogen uptake, photosynthetic efficiency, carbon storage(Published: 27 July 2012)Citation: Tellus B 2012, 64, 17216, http://dx.doi.org/10.3402/tellusb.v64i0.17216
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Aber, J. D., McDowell, W., Nadelhoffer, K., Magill, A., Berntson, G. and co-authors. 1998. Nitrogen saturation in temperate forest ecosystems: hypotheses revisited. BioScience 48, 921 933. DOI: 10.2307/1313296.
    • Adams, W. W. III and Demmig-Adams, B. 2004. Chlorophyll fluorescence as a tool to monitor plant response to the environment. In: Chlorophyll Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration (eds. G. Papageorgiou and G. Govindjee). Springer, Berlin, pp. 583 604.
    • Ahrends, H., Bru¨ gger, R., Sto¨ ckli, R., Schenk, J., Michna, P. and co-authors. 2008. Quantitative phenological observations of a mixed beech forest in northern Switzerland with digital photography. J. Geophys. Res. 113, G04004. DOI: 10.1029/ 2007JG000650.
    • Baker, N. R. 2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 59, 89 113. DOI: 10.1146/annurev.arplant.59.032607.092759.
    • Bergh, J., Linder, S., Lundmark, T. and Elfving, B. 1999. The effect of water and nutrient availability on the productivity of Norway spruce in northern and southern Sweden. Forest Ecol. Manag. 119, 51 62. DOI: 10.1016/S0378-1127(98)00509-X.
    • Bowen, G. 1973. Mineral nutrition of Ectomycorrhizae. In: The Ecology and Physiology of Ectomycorrhizae (ed. M. B. Rambler). Academic Press, New York, pp. 151 205.
    • Burkard, R., Butzberger, P. and Eugster, W. 2003. Vertical fogwater flux measurements above an elevated forest canopy at the La¨ geren research site, Switzerland. Atmos. Environ. 37, 2979 2990. DOI: 10.1016/S1352-2310(03)00254-1.
    • Cheng, L. 2003. Xanthophyll cycle pool size and composition in relation to the nitrogen content of apple trees. J. Exp. Bot. 54, 385 393. DOI: 10.1093/jxb/erg011.
    • Chiwa, M., Crossley, A., Sheppard, L. J., Sakugawa, H. and Cape, J. N. 2004. Throughfall chemistry and canopy interactions in a Sitka spruce plantation sprayed with six different simulated Howarth, R. W., Boyer, E. W., Pabich, W. J. and Galloway, J. N. 2002. Nitrogen use in the United States from 1961 to 2000 and potential future trends. Ambio 31, 88 97. DOI: 10.1639/0044- 7447(2002)031[0088:NUITUS]2.0.CO;2.
    • Krupa, S. V. 2003. Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a review. Environ. Pollut. 124, 179 221. DOI: 10.1016/S0269-7491(02)00434-7.
    • Magnani, F., Mencuccini, M., Borhetti, M., Berbigier, P., Berninger, F. and co-authors. 2007. The human footprint in the carbon cycle of temperate and boreal forest. Nature 447, 848 850. DOI: 10.1038/nature05847.
    • Magill, A., Aber, J., Currie, W., Nadelhoffer, K., Martin, M. and co-authors. 2004. Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA. Forest Ecol. Manag. 196, 7 28. DOI: 10.1016/j.foreco. 2004.03.033.
    • Maxwell, K. and Johnson, G. 2000. Chlorophyll fluorescence a practical guide. J. Exp. Bot. 51, 659 668. DOI: 10.1093/jexbot/ 51.345.659.
    • Nihlgard, B. 1985. The ammonium hypothesis an additional explanation to the forest dieback in Europe. Ambio 14, 1 8.
    • Odasz-Albrigtsen, A. M., Murphy, T. and Tommervik, H. 2000. Decreased photosynthetic efficiency in plant species exposed to multiple airborne pollutants along the Russian Norwegian border. Can. J. Bot. 78, 1021 1033. Online at: http://www. myxyz.org/phmurphy/Download/Odasz&T&M.pdf
    • Ort, D. 2001. When there is too much light. Plant Physiol. 125, 29 32. DOI: 10.1104/pp.125.1.29.
    • Pacala, S., Hurtt, G., Baker, D., Peylin, P., Houghton, R. and co-authors. 2001. Consistent land- and atmosphere-based U.S. carbon sink estimates. Science 292, 2316 2320. DOI: 10.1126/ science.1057320.
    • Pregitzer, K., Burton, A., Zak, D. and Talhelm, A. 2008. Simulated chronic nitrogen deposition increases carbon storage in Northern temperate forests. Glob. Change Biol. 14, 142 153. DOI: 10.1111/j.1365-2486.2007.01465.x.
    • Providoli, I., Bugmann, H., Siegwolf, R., Buchmann, N. and Schleppi, P. 2005. Flow of deposited inorganic N in two Gleysol-dominated mountain catchments traced with 15NO3 and 15NH4þ. Biogeochemistry 76, 453 475. DOI: 10.1007/s10533- 005-8124-1.
    • Raven, J. A. 1988. Acquisition of nitrogen by the shoots of land plants its occurrence and implications for acid-base regulation. New Phytol. 109, 1 20. DOI: 10.1111/j.1469-8137.1988. tb00212.x.
    • Reay, D., Dentener, F., Smith, P., Grace, J. and Feely, R. 2008. Global nitrogen deposition and carbon sinks. Nat. Geosci. 1, 430 437. DOI: 10.1038/ngeo230.
    • Rennenberg, H. and Gessler, A. 1999. Consequences of N deposition to forest ecosystems recent results and future research needs. Water Air Soil Pollut. 116, 47 64. DOI: 10.1023/ A:1005257500023.
    • Rihm, B. 1996. Critical Loads of Nitrogen and Their Exceedances: Eutrophying Atmospheric Deposition. Federal Office of Environment, Forests and Landscape, Rihm, Environmental Series, Vol. 275, 82 pp.
    • Ritchie, G. 2006. Chlorophyll fluorescence: what is it and what do the numbers mean? In: National Proceedings: Forest and Conservation Nursery Associations-2005 (eds. L. E. Riley, R. K. Dumroese, and T. D. Landis, tech. coords.). US Department of Agriculture, Forest Service, Fort Collins, CO, pp. 34 42.
    • Roelofs, J. G. M., Kempers, A. J., Houdijk, A. L. F. M. and Jansen, J. 1993. The effects of airborne ammonium sulphate on Pinus nigra in the Netherlands. Plant Soil 84, 45 56. Online at: http://www.springer.com/life sciences/plant sciences/journal/ 11104.
    • SAEFL. 2005. Forest Report 2005 Facts and Figures About the Condition of Swiss Forests. Swiss Federal Agency for the Environment, Forest and Landscape (SAEFL), Swiss Federal Research Institute for Forest Snow and Landscape (WSL), Bern, Switzerland, 152 pp.
    • Sievering, H. 1999. Nitrogen deposition and carbon sequestration. Nature 400, 629 630. DOI: 10.1038/23176.
    • Sievering, H. 2001. Atmospheric chemistry and deposition. In: Structure and Function of an Alpine Ecosystem Niwot Ridge, Colorado (eds. W. D. Bowman and T. R. Seastedt). Oxford University Press, New York, pp. 32 44.
    • Sievering, H., Fernandez, I., Lee, J., Hom, J. and Rustad, L. 2000. Forest canopy uptake of atmospheric nitrogen at eastern US sites: carbon storage implications? Glob. Biogeochem. Cy. 14, 1153 1159. DOI: 10.1029/1999GB001250.
    • Sievering, H., Tomaszewski, T. and Torizzo, J. 2007. Canopy uptake of atmospheric N deposition at a conifer forest: Part 1 canopy N budget, photosynthetic efficiency, and net ecosystem exchange. Tellus 59b, 483 492. DOI: 10.1111/j.1600-0889. 2007.00264.x.
    • Solberg, S., Dobbertin, M., Reinds, G. J., Lange, H., Andreassen, K. and co-authors. 2009. Analyses of the impact of changes in atmospheric deposition and climate on forest growth in European monitoring plots: a stand growth approach. Forest Ecol. Manag. 258(8), 1735 1750. DOI: 10.1016/j.foreco.2008. 09.057.
    • Strand, M. 1993. Photosynthetic activity of Scots Pine (Pinus sylvestris L.) Needles during winter is affected by exposure to SO2 and NO2 during summer. New Pytol. 123, 133 141. Online at: http://www.blackwellpublishing.com/journal.asp?ref 0028- 646X
    • Thimonier, A., Graf Pannatier, E., Schmitt, M., Waldner, P., Walthert, L. and co-authors. 2010. Does exceeding the critical loads for nitrogen alter nitrate leaching, the nutrient status of trees and their crown condition at Swiss Long-term Forest Ecosystem Research (LWF) sites? Eur. J. For. Res. 129, 443 461. DOI: 10.1007/s10342-009-0328-9.
    • Thimonier, A., Schmitt, M., Waldner, P. and Rihm, B. 2005. Atmospheric deposition on Swiss long-term forest ecosystem research (LWF) plots. Environ. Monit. Assess. 104, 81 118. DOI: 10.1007/s10661-005-1605-9.
    • Tomaszewski, T. and Sievering, H. 2007. Canopy uptake of atmospheric N deposition at a conifer forest: Part II response of chlorophyll fluorescence and gas exchange parameters. Tellus 59b, 493 502. DOI: 10.1111/j.1600-0889.2007.00265.x.
    • Tomaszewski, T., Boyce, R. and Sievering, H. 2003. Canopy uptake of atmospheric nitrogen and new growth nitrogen requirement at a Colorado subalpine forest. Can. J. Forest Res. 33, 2221 2227. DOI: 10.1139/X03-147.
    • Verhoeven, A., Deemig-Adams, B. and Adams, W. 1997. Enhanced employment of the xanthophyll cycle and thermal energy dissipation in spinach exposed to high light and N stress. Plant Physiol. 113, 817 824. Online at: http://www.plantphysiol.org/ de Vries, W., Solberg, S., Dobbertin, M., Sterba, H., Laubhahn, D. and co-authors. 2008. Ecologically implausible carbon response? Nature. 451, E1 E3. DOI: 10.1038/nature06579.
    • de Vries, W., Solberg, S., Dobbertin, M., Sterba, H., Laubhann, D. and co-authors. 2009. The impact of nitrogen deposition on carbon sequestration by European forests and heathlands. Forest Ecol. Manag. 25, 1814 1823. DOI: 10.1016/j.foreco. 2009.02.034.
    • Waldner, P., Schaub, M., Graf Pannatier, E., Schmitt, M., Thimonier, A. and co-authors. 2007. Atmospheric deposition and ozone levels in Swiss forests: are critical values exceeded? Environ. Monit. Assess. 128, 5 17. DOI: 10.1007/s10661-006- 9411-6.
    • Wright, I., Reich, P., Westoby, M., Ackerly, D., Baruch, Z. and co-authors. 2004. The worldwide leaf economics spectrum. Nature 428, 821 826. DOI: 10.1038/nature02403.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article