Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Varun Sheel; Jagat Singh Heet Bisht; Lokesh Sahu; Valérie Thouret (2016)
Publisher: Taylor & Francis Group
Journal: Tellus: Series B
Languages: English
Types: Article
Subjects: Meteorology. Climatology, QC851-999, MOZAIC, WRF/Chem, CO, O3, O3, MOZAIC, WRF-Chem, CO
This article is based on the study of the seasonal and interannual variability of carbon monoxide (CO) and ozone (O3) at different altitudes of the troposphere over Hyderabad, India, during 2006–2010 using Measurement of OZone and water vapour by Airbus In-Service Aircraft (MOZAIC) and observation from Tropospheric Emission Spectrometer (TES) aboard NASA’s Aura satellite. The MOZAIC observations show maximum seasonal variability in both CO and O3 during winter and pre-monsoon season, with CO in the range (100–200)±13 ppbv and O3 in the range (50–70)±9 ppbv. The time-series of MOZAIC data shows a significant increase of 4.2±1.3 % in the surface CO and 6.7±1.3 % in the surface O3 during 2006–2010 in Hyderabad. From MOZAIC observations, we identify CO and O3 profiles that are anomalous with respect to the monthly mean and compare those with Weather Research Forecast model coupled with Chemistry (WRF-Chem) and Model for OZone and Related Tracers, version 4 profiles for the same day. The anomalous profiles of WRF-Chem are simulated using three convection schemes. The goodness of comparison depends on the convection scheme and the altitude region of the troposphere.Keywords: MOZAIC, WRF-Chem, CO, O3(Published: 30 May 2016)Citation: Tellus B 2016, 68, 30545, http://dx.doi.org/10.3402/tellusb.v68.30545
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Arakawa, A. and Schubert, W. H. 1974. Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci. 31, 674 701. DOI: http://dx.doi.org/10.1175/1520 0469
    • Beig, G. and Brasseur, G. P. 2006. Influence of anthropogenic emissions on tropospheric ozone and its precursors over the Indian tropical region during a monsoon. Geophys. Res. Lett. 33, L07808. DOI: http://dx.doi.org/10.1029/2005GL024949
    • Betts, A. K. and Miller, M. J. 1986. A new convective adjustment scheme. Part II: single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets. Q. J. Roy. Meteorol. Soc. 112(473), 693 709. DOI: http://dx.doi.org/10. 1002/qj.49711247308
    • Brasseur, G. P., Hauglustaine, D. A., Walters, S., Rasch, P. J., M u¨ller, J.-F. and co-authors. 1998. MOZART, a global chemical transport model for ozone and related chemical tracers: 1. Model description. J. Geophys. Res. Atmos. 103(D21), 28265 28289. DOI: http://dx.doi.org/10.1029/98JD02397
    • Chen, F. and Dudhia, J. 2001. Coupling an advanced land-surface/ hydrology model with the Penn State/NCAR MM5 modeling system, part I: model description and implementation. Mon. Weather Rev. 129, 569 585. DOI: http://dx.doi.org/10.1175/1520 0493
    • Chou, M.-D., Suarez, M. J., Ho, C.-H., Yan, M. M.-H. and Lee, K.-T. 1998. Parameterizations for cloud overlapping and shortwave single-scattering properties for use in general circulation and cloud ensemble models. J. Clim. 11, 202 214. DOI: http:// dx.doi.org/10.1175/1520 0442(1998)
    • Cofala, J., Amann, M., Klimont, Z., Kupiainen, K. and Ho¨ glundIsaksson, L. 2007. Scenarios of global anthropogenic emissions of air pollutants and methane until 2030. Atmos. Environ. 41(38), 8486 8499. DOI: http://dx.doi.org/10.1016/j.atmosenv. 2007.07.010
    • Cooper, O. R., Parrish, D.D., Stohl, A., Trainer, M., Ne´ de´ lec, P. and co-authors. 2010. Increasing springtime ozone mixing ratios in the free troposphere over western North America. Nature. 463, 344 348. DOI: http://dx.doi.org/10.1038/nature08708
    • Duncan, B. N., Logan, J. A., Bey, I., Megretskaia, I. A., Yantosca, R. M. and co-authors. 2007. Global budget of co, 1988 1997: source estimates and validation with a global model. J. Geophys. Res. Atmos. 112, D22301. DOI: http://dx.doi.org/10.1029/ 2007JD008459
    • Emmons, L. K., Hauglustaine, D. A., Mu¨ ller, J-F., Carroll, M. A., Brasseur, G. P. and co-authors. 2000. Data composites of airborne observations of tropospheric ozone and its precursors. J. Geophys. Res. 105, 20497 20538.
    • Emmons, L. K., Walters, S., Hess, P.G., Lamarque, J-F., Pfister, G.G. and co-authors. 2010. Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geosci. Model Dev. 3, 43 67. DOI: http://dx.doi. org/10.5194/gmd 3 43 2010
    • Fishman, J., Solomon, S. and Crutzen, P. J. 1979. Observational and theoretical evidence in support of a significant in situ photochemical source of tropospheric ozone. Tellus. 31, 432 446.
    • Gauss, M., Myhre, G., Pitari, G., Prather, M. J., Isaksen, I. S. A. and co-authors. 2003. Radiative forcing in the 21st century due to ozone changes in the troposphere and the lower stratosphere. J. Geophys. Res Atmos. 108, D9. DOI: http://dx.doi.org/10. 1029/2002JD002624
    • Ghude, S. D., Lal, D. M., Beig, G., van der, A., R. and Sable, D. 2010. Rain-induced soil NOx emission from India during the onset of the summer monsoon: a satellite perspective. J. Geophys. Res. Atmos. 115, D16304. DOI: http://dx.doi.org/10. 1029/2009JD013367
    • Ghude, S. D., Pfister, G. G., Jena, C., van der, A., R. J., Emmons, L. K. and co-authors. 2013. Satellite constraints of nitrogen oxide (NOx) emissions from India based on OMI observations and WRF-Chem simulations. Geophys. Res. Lett. 40, 1 6. DOI: http://dx.doi.org/10.1029/2012GL053926
    • Girach, I. and Nair, P. R. 2014. Carbon monoxide over Indian region as observed by MOPITT. Atmos. Environ. 99, 599 609.
    • Granier, C., Bessagnet, B., Bond, T., D'Angiola, A., Denier van der Gon, H. and co-authors. 2011. Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980 2010 period. Clim. Change. 9(1), 163 190.
    • Grell, G. A. and De´ v e´nyi, D. 2002. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett. 29(14), 38 1 38 4. DOI: http://dx.doi.org/10.1029/2002GL015311
    • Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I. and Geron, C. 2006. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 6, 3181 3210. DOI: http://dx.doi.org/10.5194/acp 6 3181 2006
    • Gummeneni, S., Yusup, Y. B., Chavali, M. and Samadi, S. Z. 2011. Source apportionment of particulate matter in the ambient air of Hyderabad city, India. Atmos. Res. 101, 752 754.
    • Gurjar, B. R., van Aardenne, J. A., Lelieveld, J. and Mohan, M. 2004. Emission estimates and trends (1990 2000) for megacity Delhi and implications. Atmos. Environ. 38(33), 5663 5681. DOI: http://dx.doi.org/10.1016/j.atmosenv.2004.05.057
    • Hack, J. J., Boville, B. A., Kiehl, J. T., Rasch, P. J. and Williamson, D. L. 1994. Climate statistics from the National Center for Atmospheric Research Community Climate Model CCM2. J. Geophys. Res. Atmos. 99, 20785 20813. DOI: http:// dx.doi.org/10.1029/94JD01570
    • Holloway, T., Levy, I. H. and Kasibhatla, P. 2000. Global distribution of carbon monoxide. J. Geophys. Res. 105, 12123 12112.
    • Holstlag, A. and Boville, B. A. 1993. Local versus nonlocal boundary-layer diffusion in a global climate model. J. Clim. 6, 1825 1842.
    • Horowitz, L. W., Walters, S., Mauzerall, D. L., Emmons, L. K., Rasch, P. J. and co-authors. 2003. A global simulation of tropospheric ozone and related tracers: description and evaluation of MOZART, version 2. J. Geophys. Res. Atmos. 108, 4784. DOI: http://dx.doi.org/10.1029/2002JD002853
    • Hu, X.-M., Nielsen-Gammon, J. W. and Zhang, F. Q. 2010. Evaluation of three planetary boundary layer schemes in the WRF model. J. Appl. Meteorol. Climatol. 49(9), 1831 1844. DOI: http://dx.doi.org/10.1175/2010jamc2432.1
    • Janjic´ , Z. I. 1990. The step-mountain coordinate: physical package. Mon. Weather Rev. 118, 1429 1443. DOI: http://dx.doi.org/10. 1175/1520 0493(1990)
    • Kain, J. S. 2004. The Kain Fritsch convective parameterization: an update. J. Appl. Meteorol. 43, 170 181.
    • Kain, J. S. and Fritsch, J. M. 1990. A one-dimensional entraining/ detraining plume model and its application in convective parameterization. J. Atmos. Sci. 47, 2784 2802.
    • Khalil, M. A. K. and Rasmussen, R. A. 1994. Global decrease in atmospheric carbon monoxide. Nature. 370, 639 641. Phys. Discuss. 7, 6843 6902. DOI: http://dx.doi.org/10.5194/ acpd 7 6843 2007
    • Petropavlovskikh, I., Ahn, C., Bhartia, P. K. and Flynn, L. E. 2005. Comparison and covalidation of ozone anomalies and variability observed in SBUV(/2) and Umkehr Northern midlatitude ozone profile estimates. Geophys. Res. Lett. 32, L06805. DOI: http://dx.doi.org/10.1029/2004GL022002
    • Piegorsch, W. W. 2002. Tables of P-values for T-and Chi-Square Reference Distributions. Technical Report no. 194. Department of Statistics, University of South Carolina, Columbia, SC.
    • Prasad, A. K., Singh, R. P. and Kafatos, M. 2006. Influence of coal based thermal power plants on aerosol optical properties in the Indo-Gangetic basin. Geophys. Res. Lett. 33, L05805. DOI: http://dx.doi.org/10.1029/2005GL023801
    • Prasad, A. K., Singh, R. P. and Kafatos, M. 2011. Influence of coal-based thermal power plants on the spatial-temporal variability of tropospheric NO2 column over India. Environ. Monit. Assess. 184, 1891 1907.
    • Sahu, L. K. 2012. Volatile organic compounds and their measurements in the troposphere. Curr. Sci. 102(10), 1645 1649.
    • Sahu, L. K., Sheel, V., Kajino, M., Gunthe, S. S., Thouret, V. and co-authors. 2013. Characteristics of tropospheric ozone variability over an urban site in Southeast Asia: a study based on MOZAIC and MOZART vertical profiles. J. Geophys. Res. Atmos. 118(15), 8729 8747. DOI: http://dx.doi.org/10.1002/jgrd. 50662
    • Sahu, S. K., Beig, G. and Parkhi, N. 2014. Critical emissions from the largest on-road transport network in South Asia. Aerosol Air Qual. Res. 14, 135 144.
    • Sauvage, B., Martin, R. V., van Donkelaar, A. and Ziemke, J. R. 2007b. Quantification of the factors controlling tropical tropospheric ozone and the south Atlantic maximum. J. Geophys. Res. 112, 11309.
    • Schell, B., Ackermann, I. J., Hass, H., Binkowski, F. S. and Ebel, A. 2001. Modeling the formation of secondary organic aerosol within a comprehensive air quality model system. J. Geophys. Res. 106, 28275 28293. DOI: http://dx.doi.org/10.1029/2001 JD000384
    • Schultz, M., Rast, S., van het Bolscher, M., Pulles, T., Pereira, J. and co-authors. 2007. Reanalysis of the Tropospheric Chemical Composition Over the Past 40 Years, a Long-Term Global Modeling Study of Tropospheric Chemistry Funded Under the 5th EU Framework Programme. Technical Report, EU-Contract No. EVK2-CT-2002-00170, 184. Online at: http://retro.enes.org/ reports/D1 6_final.pdf
    • Seinfeld, J. H. and Pandis, S. N. 2006. From Air Pollution to Climate Change, Atmospheric Chemistry and Physics. Wiley, New York. Atmospheric Chemistry and Physics, 1326.
    • Sheel, V., Sahu, L. K., Kajino, M., Deushi, M., Stein, O. and Nedelec, P. 2014. Seasonal and interannual variability of carbon monoxide based on MOZAIC observations, MACC reanalysis, and model simulations over an urban site in India. J. Geophys. Res. Atmos. 119, 9123 9141. DOI: http://dx.doi.org/10.1002/ 2013JD021425
    • Srivastava, S. and Sheel, V. 2013. Study of tropospheric CO and O3 enhancement episode over Indonesia during autumn 2006 using the Model for Ozone and Related chemical Tracers (MOZART-4). Atmos. Environ. 67, 53 62. DOI: http://dx.doi. org/10.1016/j.atmosenv.2012.09.067
    • Stockwell, W. R., Middleton, P., Chang, J. S. and Tang, X. 1990. The second generation regional acid deposition model chemical mechanism for regional air quality modeling. J. Geophys. Res. 95, 16343 16367. DOI: http://dx.doi.org/10.1029/JD095iD10 p16343
    • Thouret, V., Marenco, A., Logan, J. A., Ne´ de´ lec, P. and Grouhel, C. 1998b. Comparisons of ozone measurements from the MOZAIC airborne program and the ozone sounding network at eight locations. J. Geophys. Res. 103, 25695 25720.
    • Thouret, V., Marenco, A., N e´d e´lec, P. and Grouhel, C. 1998a. Ozone climatologies at 9 12 km altitude as seen by the MOZAIC airborne program between September 1994 and August 1996. J. Geophys. Res. 103, 25653 25680.
    • van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A. and co-authors. 2011. The representative concentration pathways: an overview. Clim. Change 109(1 2), 5 31. DOI: http://dx.doi.org/10.1007/s10584-011-0148-z
    • Venkataraman, C., Habib, G., Kadamba, D., Shrivastava, M., Leon, J.-F. and co-authors. 2006. Emissions from open biomass burning in India: Integrating the inventory approach with high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) active-fire and land cover data. Global Biogeochem. Cycles. 20, GB2013. DOI: http://dx.doi.org/10. 1029/2005GB002547
    • Wang, Y., Jacob, D. J. and Logan, J. A. 1998. Global simulation of tropospheric O3 NOx hydrocarbon chemistry: 3. Origin of tropospheric ozone and effects of nonmethane hydrocarbons. J. Geophys. Res. Atmos. 103, 10757 10767. DOI: http://dx.doi. org/10.1029/98JD00156
    • Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J. A. and co-authors. 2011. The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning. Geosci. Model Dev. 4(3), 625 641. DOI: http://dx.doi.org/10.5194/gmd 4 625 2011
    • Wigley, T. M. L., Smith, S. J. and Prather, M. J. 2002. Radiative forcing due to reactive gas emissions. J. Clim. 15, 2690 2696.
    • Worden, H. M., Deeter, M. N., Frankenberg, C., George, M., Nichitiu, F. and co-authors. 2013. Decadal record of satellite carbon monoxide observations. Atmos. Chem. Phys. 13, 837 850. DOI: http://dx.doi.org/10.5194/acp 13 837 2013
    • Worden, J., Kulawik, S. S., Shephard, M. W., Clough, S. A., Worden, H. and co-authors. 2004. Predicted errors of tropospheric emission spectrometer nadir retrievals from spectral window selection. J. Geophys. Res. Atmos. 109(D9), D09308, DOI: http://dx.doi.org/10.1029/2004JD004522
    • Zhang, G. J. and MacFarlane, N. A. 1995. Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian climate centre general circulation model. Atmos. Ocean. 33, 407 446.
    • Zhang, L., Jacob, D. J., Liu, X., Logan, J. A., Chance, K. and co-authors. 2010. Intercomparison methods for satellite measurements of atmospheric composition: application to tropospheric ozone from TES and OMI. Atmos. Chem. Phys. 10, 4725 4739. DOI: http://dx.doi.org/10.5194/acp 4710 4725 2010
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article