Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Barrie, L. A.; Yi, Y.; Leaitch, W. R.; Lohmann, U.; Kasibhatla, P.; Roelofs, G.-J.; Wilson, J.; McGovern, F.; Benkovitz, C.; Méliéres, M. A.; Law, K.; Prospero, J.; Kritz, M.; Bergmann, D.; Bridgeman, C.; Chin, M.; Christensen, J.; Easter, R.; Feichter, J.; Land, C.; Jeuken, A.; Kjellström, E.; Koch, D.; Rasch, P. (2001)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
The comparison of large-scale sulphate aerosol models study (COSAM) compared the performance of atmospheric models with each other and observations. It involved: (i) design of a standard model experiment for the world wide web, (ii) 10 model simulations of the cycles of sulphur and 222Rn/210Pb conforming to the experimental design, (iii) assemblage of the best available observations of atmospheric SO=4, SO2 and MSA and (iv) a workshop in Halifax, Canada to analyze model performance and future model development needs. The analysis presented in this paper and two companion papers by Roelofs, and Lohmann and co-workers examines the variance between models and observations, discusses the sources of that variance and suggests ways to improve models. Variations between models in the export of SOx from Europe or North America are not sufficient to explain an order of magnitude variation in spatial distributions of SOx downwind in the northern hemisphere. On average, models predicted surface level seasonal mean SO=4 aerosol mixing ratios better (most within 20%) than SO2 mixing ratios (over-prediction by factors of 2 or more). Results suggest that vertical mixing from the planetary boundary layer into the free troposphere in source regions is a major source of uncertainty in predicting the global distribution of SO=4 aerosols in climate models today. For improvement, it is essential that globally coordinated research efforts continue to address emissions of all atmospheric species that affect the distribution and optical properties of ambient aerosols in models and that a global network of observations be established that will ultimately produce a world aerosol chemistry climatology.DOI: 10.1034/j.1600-0889.2001.530507.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Barrie, L. A., Olson, M. P. and Oikawa, K. K. 1989. The flux of anthropogenic sulphur into the Arctic from mid-latitudes. Atmos. Envir. 23, 2502-2512.
    • Benkowitz, C. M., Scholtz, T., Pacyna, J., Tarras o´n, L., Dignon, J., Voldner, E., Spiro, P. A. and Graedel, T. E. 1996. Global gridded inventories of anthropogenic emissions of sulphur and nitrogen. J. Geophys. Res. 101, 29,239-29,253.
    • Chin, M., Rood, T. B., Lin, S.-J., M u¨ller, J.-F. and Thompson, A. M. 2000. Atmospheric sulphur cycle simulated in the global model GOCART: model description and global properties. J. Geophys. Res. 105D, 24,671-24,687.
    • Christensen, J. 1997. The Danish Eulerian hemispheric model - three dimensional air pollution model used for the arctic. Atmos. Envir. 31, 4169-4191.
    • Dabdub, D. and Seinfeld, J. H. 1994. Numerical advective schemes used in air quality models - sequential and parallel implementation. Atmos. Envir. 28, 3369-3385.
    • Dentener, F., Feichter, J. and Jeuken, A. 1999. Simulation of the transport of 222Rn using on-line and oV-line models at diVerent horizontal resolutions: a detailed comparison with observations. T ellus 51B, 573-602.
    • Erickson III, D. J., Ghan, S. J. and Penner, J. E. 1990. Global ocean-to-atmosphere dimethyl sulfide flux. J. Geophys. Res. 95, 7543-7552.
    • Feichter, J. and Lohmann, U. 1999. Can relaxation technique be used to validate clouds and sulphur species in a GCM? Q. J. Roy. Meteorol. Soc. 125, 1277-1294.
    • Giannakopoulos, C. 1998. Modelling the impact of physical and removal processes on tropospheric chemistry. PhD Thesis, University of Cambridge, Cambridge, England.
    • Ghan, S., Laulainen, N., Easter, R., Wagener, R., Nemesure, S., Chapman, E., Zhang, Y. and Leung, R. 2001. Evaluation of aerosol direct radiative forcing in MIRAGE. J. Geophys. Res. D106, 5295-5316.
    • Graf, H., Feichter, J. and Langmann, B. 1997. Volcanic sulfur emissions: Estimates of source strength and its contribution to the global sulfate distribution. J. Geophys. Res. 102, 10,727-10,738.
    • Houweling, S., Dentener, F. and Lelieveld, J. 1998. The impact of nonmethane hydrocarbon compounds on tropospheric photochemistry. J. Geophys. Res. 103, 10,673-10,696.
    • Jacob, D. J. Prather, M. J., Rasch, P. J., Shia, R.-L. et al. 1997. Evaluation and intercomparison of global transport models using 222Rn and other short lived tracers. J. Geophys. Res. 102D, 5953-5970.
    • Kasibhatla, P., Chameides, W. L. and St. John, J. 1997. A three dimensional global model investigation of seasonal variations in the atmospheric burden of atmospheric sulfate aerosols. J. Geophys. Res. 102, 3737-3760.
    • Kettle, A.J. et al. 1999. A global database of sea surface dimethylsulfide (DMS) measurements and a procedure to predict sea surface DMS as a function of latitude, longitude, and month. Global Biogeochem. Cycles 13, 394-444.
    • Koch, D. M., Jacob, D. J., Rind, D., Chin, M. and Tegen, I. 1999. Tropospheric sulphur simulation and sulfate direct radiative forcing in the Goddard Institute for Space Studies general circulation model. J. Geophys. Res. 104, 23,799-23,822.
    • Kritz, M. A., Leroulley, J.-C. and Danielsen, E. F. 1990. The China Clipper - fast advective transport of radon-rich air from the Asian boundary layer to the upper troposphere near California. T ellus 42B, 46-61.
    • Kritz, M. A., Rosner, S. W. and Stockwell, D. Z. 1998. Validation of an oV-line three-dimensional chemical transport model using observed radon profiles: Part 1. Observations. J. Geophys. Res. 103D, 8425-8432.
    • Law, K. S., Plantevin, P.-H., Shallcross, D. E., Rogers, H., Grouhel, C., Thouret, V., Marenco, A. and Pyle, J. A. 1998. Evaluation of modelled O3 using MOZAIC data. J. Geophys. Res. 103, 25,721-25,740.
    • Liss, P. S. and Merlivat, L. 1986. Air-sea exchange rates: introduction and synthesis. In: T he roˆle of air-sea exchange in geochemical cycling, ed. P. Buat-Menard, pp. 113-127. D. Reidel Publishing Company, Berlin, Germany.
    • Lohmann, U., Von Salzen, K., McFarlane, N., Leighton, H. G. and Feichter, J. 1999. The tropospheric sulfur cycle in the Canadian general circulation model. J. Geophys. Res. 104, 26,833-26,858.
    • Lohmann U., Leaitch, R., Law, K., Barrie, L., Yi, Y., Bergman, D., Chin, M., Easter, R., Feichter, J., Jeuken, A., Kjellstr o¨m, E., Koch, D., Land, C., Rasch, P. and Roelofs, G.-J. 2001. Comparison of the vertical distributions of sulfur species from models participated in the COSAM exercise with observations. T ellus 53B, this issue.
    • Penner, J. E., Bergmann, D., Walton, J. J., Kinnison, D., Prather, M. J., Rotman, D., Price, C., Pickering, K. E. and Baughcum, S. L. 1998. An evaluation of upper troposphere NOx with two models. J. Geophys. Res. 103, 22,097-22,113.
    • Preiss, N., Melieres, M. A. and Pourchet, M. 1996. A compilation of data on lead 210 concentration in surface air and fluxes at the air-surface interface and water-sediment interfaces. J. Geophys. Res. 101D, 28,847-28,862.
    • Pyle, J. and Prather, M. 1996. Global tracer transport models. In: Report of a scientific symposium, V.24. WMO/TD, Geneva, Switzerland.
    • Rasch, P. J., Barth, M. C., Kiehl, J. T., Schwartz, S. E. and Benkovitz, C. M. 2000a. A description of the global sulphur cycle and its controlling processes in the National Center for Atmospheric Research Community Climate Model, Version 3. J. Geophys. Res. 105, 1367-1385.
    • Rasch, P.J., Feichter, J., Law, K., Mahowald, N., Penner, J. et al. 2000b. An assessment of scavenging and deposition processes in global models: results from the WCRP Cambridge workshop of 1995. T ellus 52B, 1025-1056.
    • Roelofs, G. J., Lelieveld, J. and Ganzeveld, L. 1998. Simulation of global sulphate distribution and the influence on eVective cloud drop radii with a coupled photochemistry-sulfur cycle model. T ellus 50B, 224-242.
    • Roelofs, G. J., Kasibhatla, P., Barrie, L., Bergmann, D., Bridgeman, C., Chin, M., Christensen, J., Easter, R., Feichter, J., Jeuken, A., Kjellstr o¨m, E., Koch, D., Land, C., Lohmann, U. and Rasch, P. 2001. Analysis of regional budgets of sulfur species modelled for the COSAM exercise. T ellus 53B, this issue.
    • Sirois, A. and Barrie, L. A. 1999. Arctic lower tropospheric aerosol trends and composition at Alert, Canada: 1980-1995. J. Geophys. Res. 104D, 11,599-11,618.
    • Spiro, P. A., Jacob, D. J. and Logan, J. A. 1992. Global inventory of sulfur emissions with 1°×1° resolution. J. Geophys. Res. 97, 6023-6036.
    • Staubes, R. and Georgii, H. W. 1993. Measurements of atmospheric and sea water DMS concentrations in the Atlantic, the Arctic and Antarctic region. In: Dimethylsulphide, oceans atmosphere and climate, eds. G. Restelli and G. Angeletti. Kluwer 95-102, Academic Publishers, 399 pp.
    • Trenberth, K. E., Olson, J. G. and Large, W. G. 1989. A global ocean wind stress climatology based on ECMW F analysis. NCAR/TN-338+STR, NCAR Technical note, August, NCAR, Boulder, CO. USA.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article

Collected from