LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Dethloff, K.; Abegg, C.; Rinke, A.; Hebestadt, I.; Romanov, V. F. (2011)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article
Subjects:
Arctic climate simulations with the high resolution regional climate model HIRHAM showsome deviations from station data in the planetary boundary layer (PBL) during winter, whichindicates the necessity of improvements in the atmospheric PBL parameterization for a betterdescription of the vertical stratification and atmosphere–surface energy exchange. A1-dimensional single column model scheme has been used to investigate the influence of twodifferent PBL parameterizations in monthly integrations for January 1991 and July 1990. Thefirst scheme uses the boundary layer parameterization of the atmospheric circulation modelECHAM3, including the Monin–Obukhov similarity theory in the surface layer and a mixinglength approach above. The second scheme applies the Rossby-number similarity theory forthe whole PBL, connecting external parameters with turbulent fluxes and with universal functionsdetermined on the basis of Arctic data. For both schemes the heat and humidity advectionhas been determined as residual term of the PBL balance equations. Diabatic sources havebeen computed from the current model solution and local temperature and humidity changesare estimated from radiosonde data. The simulated vertical structure and the atmosphere–surface energy exchange during January strongly depends on the used PBL parameterizationscheme. These different PBL parameterization schemes were then applied for simulations of theArctic climate in the 3-dimensional regional atmospheric climate model HIRHAM, usingECHAM3 with Monin–Obukhov similarity theory, ECHAM3 with Rossby-number similaritytheory and ECHAM4 parameterizations with a turbulent kinetic energy closure. The nearsurface temperature, the large-scale fields of geopotential and horizontal wind are simulatedsatisfactorily by all three schemes, but strong regional differences occur. The results show asensitivity to the type of turbulence exchange scheme used. The comparison with ECMWFanalyses and with radiosonde data reveals that during January ECHAM3 with Rossby numbersimilarity theory more succesfully simulates the cold and stable PBL over land surfaces, whereasover the open ocean ECHAM3 with Monin Obukhov similarity works better. ECHAM3 withRossby-number similarity theory delivers a better adapted vertical heat exchange under stableArctic conditions and reduces the cold bias at the surface. The monthly mean surface turbulentheat flux distribution strongly depends on the use of different PBL parameterizations and leadsto different Arctic climate structures throughout the atmosphere with the strongest changes atthe ice edge for January.DOI: 10.1034/j.1600-0870.2001.01073.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Abegg, C. 1999. Parameterization of atmospheric boundary layer processes in a regional climate model of the Arctic. Reports on Polar Research 311, 120 pp (in German).
    • Betts, A. K. and Miller, M. J. 1986. A new convective adjustment scheme (II) Single column tests using GATE wave, BOMEX, ATEX, and arctic air-mass data sets. Q. J. R. Meteorol. Soc. 112, 693-709.
    • Blackadar, A. K. 1962. The vertical distribution of wind and turbulent exchange in a neutral atmosphere. J. Geophys. Res. 67, 3095-3102.
    • Blackadar, A. K. 1967. External parameters of the wind flow in the barotropic boundary layer of the atmosphere. Proc. GARP Study Conference, Stokholm, WMO.
    • Brinkop, S. and Roeckner, E. 1995. Sensitivity of a general circulation model to parameterizations of cloudturbulence interactions in the atmospheric boundary layer. T ellus 47A, 197-220.
    • Bromwich, D. H., Tzeng, R. Y. and Parish, T. R. 1994. Simulation of the modern Arctic climate by the NCAR CCM1. J. Climate 7, 1050-1069.
    • Christensen, J. H. and Van Mejjgaard, E. 1992. On the construction of a regional climate model. T ech. Rep. 92-14. DMI, Copenhagen.
    • Christensen, J. H., Christensen, O. B., Lopez, P., Van Meijgaard, E. and Botzet, M. 1996. The HIRHAM4 regional atmospheric climate model. DNMI Sci. Rep. 96-4, Dan. Meteorol. Inst., Copenhagen, 51 pp.
    • Claussen, M., Lohmann, U., Roeckner, E. and Schulzweida, U. 1994. A global data set for land surface parameters. MPI Rep. 135. MPI Hamburg.
    • Curry, J. A., Rossow, W. B., Randall, D. and Schramm, J. L. 1996. Overview of Arctic cloud and radiation characteristics. J. Clim. 9, 1731-1764.
    • Cuxart, J., Bougeault, P., Lacarrere, P., Noilhan, J. and Soler, M. R. 1994. A comparison between transilient turbulence theory and the exchange coefficient model approaches. Boundary-L ayer Meteorology, 67, 251-276.
    • Davies, H. C. 1976. A lateral boundary formulation for multilevel prediction models. Q. J. R. Meteorol. Soc. 102, 405-418.
    • Derbyshire, S. H. 1995. Stable boundary layers: observations, models and variability. Part I: Modelling and measurements. Boundary-L ayer Meteorology 74, 19-54.
    • Debyshire, S. H. 1999. Boundary-layer decoupling over cold surfaces as a physical boundary-instability. Boundary-L ayer Meteorology 90, 297-325.
    • Dethloff, K., Rinke, A., Lehmann, R., Christensen, J. H., Botzet, M. and Machenhauer, B. 1996. Regional climate of the Arctic atmosphere. J. Geophys. Res. 101, 23,401-23,422.
    • DKRZ, 1992. The ECHAM3 atmospheric general circulation model. T ech. Rep. 6. Modellbetreuungsgruppe, Hamburg, 184 pp.
    • Du¨ menil, L. and Todini, E. 1992. A rainfall-runoff scheme for use in the Hamburg climate model. In: J. P. Kane (ed.): Advances in theoretical hydrology - a tribute to James Dooge. Elsevier Science Publishers, pp. 129-157.
    • Giorgetta, M. and Wild, M. 1995. The water vapour continuum and its representation in ECHAM4. MPI Rep. 162, 38 pp., Hamburg.
    • Giorgi, F., Marinucci, M. R. and Bates, G. T. 1993. Development of a second-generation regional climate model (RegCM2). Part 1: Boundary layer and radiative transfer processes. Mon. Wea. Rev. 121, 2794-2831.
    • Gustafsson, N. 1993. HIRLAM 2 final report. HIRL AM T ech. Rep. 9, 126 pp., Norrk o¨ping.
    • Handorf, D., Foken, T. and Kottmeier, C. 1999. The stable atmospheric bondary layer over an antarctic ice sheet. Boundary-L ayer Meteorology 91, 165-189.
    • HARA, 1996. National Snow and Ice Data Center (NSIDC). Historical Arctic Rawinsonde Archive, vol. 3-5. CD-ROM, Boulder, Colo.
    • Hense, A., Kerschgens, M. and Raschke, E. 1982. An economical method for computing radiative transfer in circulation models. Q. J. R. Meteorol. Soc. 108, 231-252.
    • J u¨rrens, R. 1999. Validation of surface fluxes in climate simulations of the Arctic with the regional model REMO. T ellus 51A, 698-709.
    • Kazansky, A. B. and Monin, A. S. 1960. On the turbulent regime above air-surface-layer. USSR Academy of Science News. Geophys. Ser. 1, 165-168.
    • Louis, J.-F. 1979. A parametric model of vertical eddy fluxes in the atmosphere. Boundary-L ayer Meteorology 79, 107-130.
    • Lynch, A. H., Chapman, W. L., Walsh, J. E. and Weller, G. 1995. Development of a regional climate model of the western Arctic. J. Climate 8, 1555-1570.
    • Machenhauer, B. 1988. The HIRLAM final report. HIRL AM T ech. Rep. 5, 116 pp. Copenhagen.
    • McNider, R. T., England, D. E., Friedman, M. J. and Shi, X. 1995. Predictability of the stable atmospheric boundary layer. J. Atmos. Sci. 52, 1602-1614.
    • Miller, M. J., Palmer, T. N. and Swinbank, R. 1989. Parameterization and influence of sub-grid scale orography in general circulation and numerical weather prediction models. Meteorol. Atmos. Phys. 40, 84-109.
    • Monin, A. S. and Zilitinkevich, S. S. 1967. Planetary boundary layer and large-scale atmospheric dynamics. Proc. GARP Study Conference. Stokholm, WMO.
    • Monin, A. S. and Yaglom, A. M. 1971. Statistical fluid mechanics, mechanics of turbulence. MIT Press, Cambridge, 769 pp.
    • Morcrette, J.-J. 1989. Description of the radiation scheme in the ECMWF model. T ech. Memo. 165, ECMWF, Reading.
    • Nordeng, T. E. 1994. Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. T ech. Memo. 206, ECMWF, Reading.
    • Overland, J. E., Adams, J. M. and Bond, N. A. 1997. Regional variations of winter temperatures in the Arctic. J. Climate 10, 821-837.
    • Overland, J. E. and Guest, P. S. 1991. Control of minimum snow and air temperatures over Arctic sea ice during winter. J. Geophys. Res. 96, 4651-4662.
    • Palmer, T. N., Shutts, G. J. and Swinbank, R. 1986. Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization. Q. J. R. Meteorol. Soc. 112, 1001-1039.
    • Pinto, J. O. and Curry, J. A. 1997. R oˆle of radiative transfer in the modeled mesoscale development of summertime arctic stratus, J. Geophys. Res. 102, 13,861-13,872.
    • Pinto, J. O., Curry, J. A., Lynch, A. H. and Persson, P. O. 1999. Modelling clouds and radiation for the November 1997 period of SHEBA using a column climate model. J. Geophys. Res. 104, 6661-6678.
    • Randall, D. A., Xu, K.-M., Somerville, R. J. and Iacobellis, S. 1996. Single column models and cloud ensemble models as links between observations and climate models, J. Climate 9, 1683-1697.
    • Randall, D. et al. 1998. Status and outlook for largescale modeling of atmosphere-ice-ocean interactions in the Arctic. Bull Amer. Met. Soc. 78, 197-219.
    • Randall, D. A. and Cripe, D. G. 1999. Alternative methods for specification of observed forcing in singlecolumn models and cloud system models. J. Geophys. Res. 104, 24,527-24,545.
    • Rinke, A., Dethloff, K., Christensen, J. H., Botzet, M. and Machenhauer, B. 1997. Simulation and validation of Arctic radiation and clouds in a regional climate model. J. Geophys. Res. 103, 29,833-29,847.
    • Rinke, A., Dethloff, K. and Christensen, J. H. 1999. Arctic winter climate and its interannual variations simulated by a regional climate model. J. Geophys. Res. 104, 19,027-19,038.
    • Roeckner, E., Rieland, M. and Keup, E. 1991. Modelling of cloud and radiation in the ECHAM4 model. In: ECMWF/WCRP Workshop on Clouds, radiative transfer and the hydrological cycle, 12-15 November 1990, pp. 199-222. ECMWF, Reading.
    • Roeckner E. et al. 1992. Simulation of the present-day climate with the ECHAM model: impact of model physics and resolution. MPI Rep. 93, Hamburg, 171 pp.
    • Roeckner E. et al. 1996. The atmospheric general circulation model ECHAM4: model description and simulation of present-day climate. MPI Rep. 218, 90 pp, Hamburg.
    • Romanov, V. F. 1976a. The parameterization of nonlinear small-scale atmosphere-ice-ocean interactions. Meteorology and Hydrology 12, 49-59.
    • Romanov, V. F. 1976b. Vertical motions and turbulent regime in the planetary boundary layer. USSR Academy of Science News. Atmospheric and Oceanic Physics 12, 478-484.
    • Romanov, V. F. 1977. The similarity theory for the baroclinic atmospheric boundary layer. USSR Academy of Science News. Atmospheric and Oceanic Physics 13, 1081-1086.
    • Romanov, V. F., Ariskina, N. V., Vasilljev, V. F. and Lagun, V. J. 1987. Energetics of the atmosphere in polar regions (in Russian). Gidrometeoizdat L eningrad, 296 pp.
    • Serezze, M., Kahl, J. D. and Schnell, R. C. 1992. Lowlevel temperature inversions of the Eurasian Arctic and comparisons with Soviet drifting station data. J. Clim. 5, 615-629.
    • Sundquist, H. 1978. A parameterization scheme for noncovective condensation including prediction of cloud water content. Q. J. R. Meteorol. Soc. 104, 677-690.
    • Tiedtke, M. 1989. A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev. 117, 1779-1800.
    • Tilley, J. S. and Lynch, A. H. 1998. On the applicability of current land surface schemes for Arctic tundra: an intercomparison study. J. Geophys. Res. 103, 29,051-29,063.
    • Viterbo, P., Beljaars, A., Mahfouf, J. F. and Teixeira, J. 1999. The representation of soil moisture freezing and its impact on the stable boundary layer. Q. J. R. Meteorol. Soc. 125, 2401-2426.
    • Walsh, J. E., Lynch, A., Chapman, W. and Musgrave, D. 1993. A regional model for the atmosphere-ice-ocean interaction in the western Arctic. Meteorol. Atmos. Phys. 51, 179-194.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    42
    42%
  • No similar publications.

Share - Bookmark

Cite this article

Collected from