LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Chevillard, Anne; Ciais, Philippe; Karstens, Ute; Heimann, Marin; Schmidt, Martina; Levin, Ingeborg; Jacob, Daniela; Podzun, Ralf; Kazan, Victor; Sartorius, Hartmut; Weingartner, Ernest (2002)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects:
The 222Rn concentration simulated by the regional atmospheric model REMO over Europe and western Siberia is compared to in-situ records in Europe, and discussed in the context of site effects for stations that are also part of a CO2 observing network. The REMO model has a limited spatial domain, forced at its lateral boundaries with meteorological fields of the European Centre for Medium-Range Weather Forecasts and with tracer concentrations issued from the TM3 global transport model. The modelled 222Rn field is compared to measurements at six stations: two coastal ones (Atlantic Ocean and Baltic Sea), two low-elevation sites in plains, one mountain station and one high-altitude station. We show that the synoptic and diurnal 222Rn variability as simulated by REMO (55 km by 55 km) is realistic. In some cases REMO performs better than TM3, which is of coarser resolution, but this is not always true. At Mace Head, a station located near the western edge of the REMO domain, we show that the 222Rn “baseline” concentration is strongly influenced by boundary conditions, reflecting 222Rn transport from North America across the Atlantic Ocean. At Schauinsland, a mountain station in south-western Germany, even though the spatial resolution of REMO is not fine enough to reproduce transport processes induced by local topography, a fairly good agreement between model and measurements can be obtained, provided that one can determine from comparison of observed and modelled diurnal temperature changes which layer of the model is suitable for comparison with the data. Finally, the implications of modelling 222Rn are discussed here in the broader context of interpreting site effects that may also affect CO2 continental observations in Europe.DOI: 10.1034/j.1600-0889.2002.01339.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Biraud, S., Ciais, P., Ramonet, M., Simmonds, P., Kazan, V., Monfray, P., O'Doherty, S., Spain, G. T. and Jennings, G. S. 2000. European greenhouse gas emissions estimated from continuous atmospheric measurements and radon222 at Mace Head, Ireland. J. Geophys. Res. 105, 1351- 1366.
    • Bousquet, P., Gaudry, A., Ciais, P., Kazan, V., Monfray, P., Simmonds, P. G. and Jennings, G. S. 1996. Atmospheric CO2 concentration variations recorded at Mace Head, Ireland, from 1992 to 1994. Phys. Chem. Earth 21, 477- 481.
    • Bousquet, P., Peylin, P., Ciais, P., Ramonet, M. and Monfray, P. 1999. Optimisation of annual atmospheric CO2 net sources and sinks using inverse modeling. Part 2: sensitivity study. J. Geophys. Res. 104, 26179-26193.
    • Chevillard, A., Karstens, U., Ciais, P., Lafont, S. and Heimann, M. 2002. Simulation of atmospheric CO2 over Europe and western Siberia using the regional scale model REMO. Tellus 54B, this issue.
    • Cuntz, M. 1997. The Heidelberg 222radon monitor: Calibration, optimisation, application. Thesis, Institut fu¨r Umweltphysik, University of Heidelberg (in German).
    • Dentener, F., Feichter, J. and Jeuken, A. 1999. Simulation of the transport of 222Rn using on-line and off-line models at different horizontal resolutions: a detailed comparison with measurement. Tellus 51B, 573-602.
    • Do¨rr, H. and Mu¨nnich, K. O. 1990. 222Rn flux and soil air concentration profiles in West Germany. Soil Rn as tracer for gas transport in the unsaturated soil zone. Tellus 42B, 20-28.
    • Eckhardt, K. 1990. Measurement of radon flux and of its dependence with soil conditions. Thesis, Institut fu¨r Umweltphysik, University of Heidelberg (in German).
    • Ga¨ggeler, H. W., Jost, D. T., Baltensperger, U., Schwikowski, M. 1995. Radon and thoron decay product and 210Pb measurements at Jungfraujoch, Switzerland. Atmos. Environ. 29, 607-616.
    • George, A. C. 1981. Radon flux measurement. In: USDOE rpt. EML-399 Environmental Measuring Laboratory, U.S. Dept. of Energy, New York, 207-212.
    • Gurney, K. R., Law, R. M., Denning, S. A., Rayner, P. J., Baker, D. et al., 2002. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature 415, 626-630.
    • Heimann, M. 1995. The global atmospheric tracer model TM2. Technical report no.10, Deutsches Klimarechnenzentrum (DKRZ), Hamburg, Germany.
    • Heimann, M., Monfray, P. and Polian, G. 1990. Modeling the long range transport of 222Rn to Subantarctic and Antarctic areas. Tellus 42B, 83-99.
    • Jacob, D. and Potzun, R. 1997. Sensitivity studies with the regional climate model REMO. Meteor. Atmos. Phys. 63, 119-129.
    • Jacob, D. J. and Prather, M. J. 1990. Radon-222 as a test of convective transport in a general circulation model Tellus 42B, 118-134.
    • Jacob, D. J., Prather, M. J., Rasch, P. J., Shia, R.-L., Balkansky, Y. J. et al., 1997. Evaluation an intercomparison of global atmospheric transport models using 222Rn and other short-lived tracers. J. Geophys. Res. 102, 5953- 5970.
    • Karstens, U., Nolte-Holube, R. and Rockel, B. 1996. Calculation of the water budget over the Baltic catchment area using the regional forecast model REMO for June 1993. Tellus 48A, 684-692.
    • Lambert, G., Polian, G., Sanak, J., Ardouin, B., Buisson, A., Jegou, A. and Leroulley, J. C. 1982. 222Rn cycle and its daughters: applications to the troposphere-stratosphere exchange study. Ann. Ge´ophys. 38, 497-531.
    • Langmann, B. 2000. Numerical modeling of regional scale transport and photochemistry directly together with meteorological processes. Atmos. Environ. 34, 3585- 3598.
    • Levin, I., Graul, R. and Trivett, N. B. A. 1995. Long-term observations of atmospheric CO2 and carbon isotopes at continental sites in Germany. Tellus 47B, 23-34.
    • Levin, I., Born, M., Cuntz, M., Langendo¨rfer, U., Mantsch, S., Naegler, T., Schmidt, M., Varlagin, A., Verclas, S. and Wagenbach, D. 2002. Observations of atmospheric variability and soil exhalation rate of radon-222 at a Russian forest site: Technical approach and deployment for boundary layer studies. Tellus 54B, this issue.
    • Liu, S. C., McAfee, J. R. and Cicerone, R. J. 1984. Radon222 and tropospheric vertical transport. J. Geophys. Res. 89, 7291-7297.
    • Louis, J.-F. 1979. A parametric model of vertical eddy fluxes in the atmosphere. Boundary Layer Meterol. 17, 187- 202.
    • Lugauer, M., Baltensperger, U., Furger, M., Ga¨ggeler, H. W., Jost, D. T., Schwikowski, M. and Wanner, H. 1998. Aerosol transport to the high alpine sites Jungfraujoch (3454 m asl) and Colle Gnifetti (4452 m asl). Tellus 50B, 76-92.
    • Lugauer, M., Baltensperger, U., Furger, M., Gaggeler, H. W., Jost, D. T., Nyeki, S. and Schwikowski, M. 2000. Influences of vertical transport and scavenging on aerosol particle surface area and radon decay product concentrations at the Jungfraujoch (3454 m above sea level). J. Geophys. Res. 105, 19869-19879.
    • Majewski, D. 1991. The Europa model of the Deutscher Wetterdienst. Semin. Proc. ECMWF 2, 147-191.
    • Mellor, B. and Yamada, T. 1974. A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci. 31, 1791-1806.
    • Nazaroff, W. N. 1992. Radon transport from soil to air. Rev. Geophys. 30, 137-160.
    • Nyeki, S., Baltensperger, U., Colbeck, I., Jost, D. T., Weingartner, E. and Ga¨ggler, H. W. 1998. The Jungfraujoch high-alpine research station (3454 m) as a background clean continental site for the measurement of aerosol parameters. J. Geophys. Res. 103, 6097-6107.
    • Ramonet, M. 1994. Variabilite´ du CO2 atmosphe´rique en re´gions australes: Comparaison mode`le-mesures. Ph.D. Thesis, Universite´ de Paris 6, France.
    • Ramonet, M., Le Roulley, J. C., Bousquet, P. and Monfray, P. 1996. Radon-222 measurements during TROPOZ II compaign and comparison with a global atmospheric transport model. J. Atmos. Chem. 23, 107-136.
    • Russel, G. and Lerner, J. 1981. A new finite-differencing scheme for tracer transport equation. J. Appl. Meteorol. 20, 1483-1498.
    • Schmidt, M. 1999. Measurement and balancing anthropogenic greenhouse gases in Germany. Ph.D. Thesis, University of Heidelberg, Germany.
    • Schmidt, M., Graul, R., Sartorius, H. and Levin, I. 1996. Carbon dioxide and methane in continental Europe: a climatology, and 222-radon-based emission estimates. Tellus 48B, 457-473.
    • Smolarkiewicz, P. K. 1983. A simple positive definite advection scheme with small implicit diffusion. Mon. Weather Rev. 111, 479-486.
    • Tiedtke, M. 1989. A comprehensive mass flux scheme for cumulus parameterization in large scale models. Mon. Weather Rev. 117, 1779-1800.
    • Turekian, K. K., Nozaki, Y., Benninger, L. K. 1977. Geochemistry of atmospheric 222Rn and 222Rn products. Ann. Rev. Earth Planet. Sci. 5, 227-255.
    • Whittlestone, S., Zahorowski, W. and Schery, S. D. 1998. Radon flux variability with season and location in Tasmania, Australia. J. Radioanal. Nucl. Chem. 236, 1- 2, 213-217.
    • Wilkening, M. H. and Clements, W. E. 1975. Radon-222 from the ocean surface. J. Geophys. Res. 80, 3828- 3830.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from