LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Aalto, Tuula; Hatakka, Juha; Lallo, Marko (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects:
Methane mixing ratios have been continuously observed at Pallas, Finland since winter 2004. The seasonal variation in monthly means was ca. 40 ppb, showing largest mixing ratios in winter and also high values during late summer. Examination of back-trajectories showed that the air masses with elevated methane mixing ratios arrived from continental Eastern and Central Europe while low methane mixing ratios were connected with Atlantic and Arctic air masses. During summer, air masses with highest mixing ratios arrived from Northwestern Russia indicating wetland sources, while the influence of southern emissions became more significant in winter. Methane was positively correlated with carbon dioxide and negatively correlated with ozone in winter. The average slope of the selected wintertime background hourly mean mixing ratios was 7.0 ± 1.2 ppb(CH4)/ppm(CO2). Nocturnal summertime low-altitude measurements above a local wetland source indicated slopes of about 10 ± 1 ppb(CH4)/ppm(CO2). The different slopes reflect the differences in emission parameters.DOI: 10.1111/j.1600-0889.2007.00248.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Aalto, T., Hatakka, J., Paatero, J., Tuovinen, J.-P., Aurela, M. and coauthors. 2002. Tropospheric carbon dioxide concentrations at a northern boreal site in Finland: basic variations and source areas. Tellus 54B, 110-126.
    • Bergamaschi, P., Krol, M., Dentener, F., Vermeulen, A., Meinhardt, F. and co-authors. 2005. Inverse modeling of national and European CH4 emissions using the atmospheric zoom model TM5. Atmospheric Chemistry and Physics 5, 2431-2460.
    • Biraud, S., Ciais, P., Ramonet, M., Simmonds, P., Kazan, V. and coauthors. 2000. European greenhouse gas emissions estimated from continuous atmospheric measurements and radon 222 at Mace Head, Ireland. J. Geophys. Res. 105(D1), 1351-1366.
    • Christensen, T. R., Ekberg, A., Stro¨m, L., Mastepanov, M., Panikov, N. and co-authors. 2003. Factors controlling large scale variations in methane emissions from wetlands. Geophys. Res. Lett. 30(7), 1414, doi: 10.1029/2002GL016848.
    • Conway, T. J. and Steele, L. P. 1989. Carbon dioxide and methane in the Arctic atmosphere. J. Atmos. Chem. 9, 81-99.
    • Cunnold, D. M., Steele, L. P., Fraser, P. J., Simmonds, P. G., Prinn, R. G. and co-authors. 2002. In situ measurements of atmospheric methane at GAGE/AGAGE sites during 1985-2000 and resulting source inferences. J. Geophys. Res. 107(D14), 4225, doi: 10.1029/2001JD001226.
    • Dlugokencky, E. J., Masarie, K. A., Lang, P. M. and Tans, P. P. 1998. Continuing decline in the growth rate of the atmospheric methane burden. Nature 393, 447-450.
    • Dlugokencky, E. J., Houweling, S., Bruhwiler, L., Masarie, K. A., Lang, P. M. and co-authors. 2003. Atmospheric methane levels off: Temporary pause or a new steady-state? Geophys. Res. Lett. 30(19), 1992, doi: 10.1029/2003GL018126.
    • Eneroth, K., Aalto, T., Hatakka, J., Holme´n, K., Laurila, T. and co-authors. 2005. Atmospheric transport of carbon dioxide to a baseline monitoring station in northern Finland. Tellus 57B, 366- 374.
    • Friborg, T., Soegaard, H., Christensen, T. R., Lloyd, C. R. and Panikov, N. S. 2003. Siberian wetlands: Where a sink is a source. Geophys. Res. Lett. 30(21), 2129, doi: 10.1029/2003GL017797.
    • GLOBALVIEW-CH4: Cooperative Atmospheric Data Integration Project - Methane. CD-ROM, NOAA/CMDL, Boulder, Colorado. [Also available on Internet via anonymous FTP to ftp.cmdl.noaa.gov, Path: ccg/ch4/GLOBALVIEW], 2005.
    • Gorham, E. 1991. Northern peatlands: Role in the carbon cycle and probable responses to climatic warming. Ecological Applications 1, 182-195.
    • Hatakka, J., Aalto, T., Aaltonen, V., Aurela, M., Hakola, H. and coauthors. 2003. Overview of atmospheric research activities and results at Pallas GAW station. Boreal Environment Research 8, 365- 384.
    • Hargreaves, K. J., Fowler, D., Pitcairn, C. E. R. and Aurela, M. 2001. Annual methane emission from Finnish mires estimated from eddy covariance campaign measurements. Theor. Appl. Climatol. 70, 203- 213, doi:10.1007/s007040170015.
    • Harris, J. M., Dlugokencky, E. J., Oltmans, S. J., Tans, P. P., Conway, T. J. and co-authors. 2000. An interpretation of trace gas correlations during Barrow, Alaska, winter dark periods, 1986-1997. J. Geophys. Res. 105(D13), 17267-17278.
    • Heikkinen, J. E. P., Elsakov, V. and Martikainen, P. J. 2002. Carbon dioxide and methane dynamics and annual carbon balance in tundra wetland in NE Europe, Russia. Global Biogeochemical Cycles 16(14), 115, doi: 10.1029/2002GB001930.
    • Huttunen, J. T., Nyka¨nen, H., Turunen, J. and Martikainen, P. J. 2003. Methane emissions from natural peatlands in the northern boreal zone in Finland, Fennoscandia. Atmos. Environ. 37, 147-151.
    • Jagovkina, S. V., Karol, I. L., Zubov, V. A., Lagun, V. E., Reshetnikov, A. I. and co-authors. 2000. Reconstruction of the methane fluxes from the west Siberia gas fields by the 3D regional chemical transport model. Atmos. Environ. 34, 5319-5328.
    • Kasischke, E. S. and Bruhwiler, L. P. 2003. Emissions of carbon dioxide, carbon monoxide, and methane from boreal forest fires in 1998. J. Geophys. Res. 108(D1), 8146, doi: 10.1029/2001JD000461.
    • Laurila, T., Aurela, M., Lohila, A. and Tuovinen, J.-P. 2005. Trace gas and CO2 contributions of northern peatlands to global warming potential. In: The Carbon Balance of Forest Biomes (eds H. Griffiths and P. G. Jarvis), Taylor & Francis, Oxford, UK, 270-292.
    • Levin, I., Glatzel-Mattheier, H., Marik, T., Cuntz, M. and Schmidt, M. 1999. Verification of German methane emission inventories and their recent changes based on atmospheric observations. J. Geophys. Res. 104(D3), 3447-3456.
    • Minkkinen, K., Korhonen, R., Savolainen, I. and Laine, J. 2002. Carbon balance and radiative forcing of Finnish peatlands 1900-2100 - the impact of forestry drainage. Global Change Biol. 8, 785-799.
    • Necki, J., Schmidt, M., Rozanski, K., Zimnoch, M., Korus, A. and coauthors. 2003. Six-year record of atmospheric carbon dioxide and methane at a high-altitude mountain site in Poland. Tellus 55B, 94- 104.
    • Nisbet, E. 2002. Have sudden large releases of methane from geological reservoirs occurred since the Last Glacial Maximum, and could such releases occur again? Phil. Trans. R. Soc. Lond. A360, 581-607.
    • Nisbet, E. (Ed.) and participant partners. 2005. Methane Monitoring in the European region (MethMonitEUr). Final Report in EC 5th Framework Programme “Environment and Sustainable Development”, Reporting Period Feb 1, 2003 - Jan 31, 2005, Contract EVK2-CT-2002- 00175. Available at http://www.gl.rhul.ac.uk/METH/MonitEUr/ final/MethMonFinal.htm.
    • Nyka¨nen, H., Alm, J., Silvola, J., Tolonen, K. and Martikainen, P. J. 1998. Methane fluxes on boreal wetlands of different fertility and the effect of long-term experimental lowering of the water table on flux rates. Global Biogeochem. Cycles 12(1), 53-69.
    • Olivier, J. G. J., Van Aardenne, J. A., Dentener, F., Ganzeveld, L. and Peters, J. A. H. W. 2005. Recent trends in global greenhouse gas emissions: regional trends and spatial distribution of key sources. In: NonCO2 Greenhouse Gases (NCGG-4) (ed A. van Amstel), Millpress, Rotterdam, 325-330.
    • Panikov, N. S. and Dedysh, S. N. 2000. Cold season CH4 and CO2 emission from boreal peat bogs (West Siberia): Winter fluxes and thaw activation dynamics. Global Biogeochem. Cycles 14, 1071-1080.
    • Pedersen, I.-T., Holme´n, K. and Hermansen, O. 2005. Atmospheric methane at Zeppelin Station in Ny-˚Alesund: presentation and analysis of in situ measurements. Journal of Environmental Monitoring 7(5), 488-492.
    • Schmidt, M., Graul, R., Sartorius, H. and Levin, I. 1996. Carbon dioxide and methane in continental Europe: a climatology, and 222Radonbased emission estimates. Tellus 48B, 457-473.
    • Sidorov, K., Sogachev, A., Langendo¨rfer, U., Lloyd, J., Nepomniachii, I. L. and co-authors. 2002. Seasonal variability of greenhouse gases in the lower troposphere above the eastern European taiga (Syktyvkar, Russia). Tellus 54B, 735-748.
    • Stohl, A., Wotawa, G., Seibert, P. and Kromp-Kolb, H. 1995. Interpolation errors in wind fields as a function of spatial and temporal resolution and their impact on different types of kinematic trajectories. J. Appl. Meteorol. 34, 2149-2165.
    • Stohl, A. 1996. Trajectory statistics - A new method to establish sourcereceptor relationships of air pollutants and its application to the transport of particulate sulfate in Europe. Atmos. Environ. 30, 579-587.
    • Stohl, A. and Seibert, P. 1998. Accuracy of trajectories as determined from the conservation of meteorological tracers. Qtr. J. R. Meteor. Soc. 124, 1465-1484.
    • Walter, B. P., Heimann, M., Matthews, E. 2001. Modeling modern methane emissions from natural wetlands 2. Interannual variations 1982-1993. J. Geophys. Res. 106(D24), 34 207-34 219.
    • van der Werf, G. R., Randerson, J. T., Collatz, G. J., Giglio, L., Kasibhatla, P. S. and co-authors. 2004. Continental-scale partitioning of fire emissions during the 1997 to 2001 El Nin˜o/La Nin˜a period. Science 303, 73-76.
    • Thoning, K. W., Tans, P. P., Komhyr, W. D. 1989. Atmospheric carbon dioxide at Mauna Loa Observatory 2. Analysis of the NOAA GMCC data, 1974-1985. J. Geophys. Res. 94, 8549-8565.
    • Warwick, N. J., Bekki, S., Law, K. S., Nisbet, E. G. and Pyle, J. A. 2002. The impact of meteorology on the interannual growth rate of atmospheric methane. Geophys. Res. Lett. 29(20), 1944-1947.
    • Whiting, G. J. and Chanton, J. P. 2001. Greenhouse carbon balance of wetlands: methane emission versus carbon sequestration. Tellus 53B, 521-528.
    • Worthy, D. E. J., Trivett, N. B. A., Hopper, J. F. and Bottenheim, J. W. 1994. Analysis of long-range transport events at Alert, Northwest Territories, during the Polar Sunrise Experiment. J. Geophys. Res. 99(D12), 25329-25344.
    • Worthy, D. E. J., Levin, I., Hopper, F., Ernst, M. K. and Trivett, N.B. A. 2000. Evidence for a link between climate and northern wetland methane emissions. J. Geophys. Res. 105(D3), 4031-4038.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from