LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Cristofanelli, P.; Calzolari, F.; Bonafè, U.; Lanconelli, C.; Lupi, A.; Busetto, M.; Vitale, V.; Colombo, T.; Bonasoni, P. (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects:
The work focuses on the analysis of CO2 and O3 surface variations observed during five summer experimental campaigns carried out at the ‘Icaro Camp’ clean air facility (74.7°S, 164.1°E, 41 m a.s.l.) of the ‘Mario Zucchelli’ Italian coastal research station. This experimental activity allowed the definition of summer average background O3 values that ranged from 18.3 ± 4.7 ppbv (summer 2005–2006) to 21.3 ± 4.0 ppbv (summer 2003–2004). Background CO2 concentrations showed an average growth rate of 2.10 ppmv yr-1, with the highest CO2 increase between the summer campaigns 2002–2003 and 2001–2002 (+2.85 ppmv yr-1), probably reflecting the influence of the 2002/2003 ENSO event. A comparison with other Antarctic coastal sites suggested that the summer background CO2 and O3 at MZS-IC are well representative of the average conditions of the Ross Sea coastal regions. As shown by the analysis of local wind direction and by 3-D back-trajectory calculations, the highest CO2 and O3 values were recorded in correspondence to air masses flowing from the interior of the Antarctic continent. These results suggest that air mass transport from the interior of the continent exerts an important influence on air mass composition in Antarctic coastal areas.DOI: 10.1111/j.1600-0889.2011.00576.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Aoki, S. and Nakazawa, T. 1997. Continuous measurement of atmospheric CO2 concentration at Syowa station (in Japanese). Antarct. Rec. 41, 161-176.
    • Argentini, S., Del Buono, P., Della Vedova, A. M. and Mastrantonio, G. 1995. A statistical analysis of wind in Terra Nova Bay, Antarctica, for the austral summers 1988 and 1999. Atmos. Res. 39, 145-256.
    • Bromwich, D. H. 1989. An extraordinary katabatic wind regime at Terra Nova Bay, Antarctica. Mon. Wea. Rev. 117, 688-695.
    • Bromwich, H. D., Monaghan, A. J., Powers, J. G., Cassano, J. J., He-Lin, W. and co-authors. 2003. Antarctic mesoscale prediction system (AMPS): a case study from the 2000-01 field season. Mon. Wea. Rev. 131, 412-434.
    • Calzolari, F., Evangelisti, F., Bonafe`, U., Colombo, T., Vitale, V. and coauthors. 2002. CO2 and O3 concentration measurements at Terra Nova Bay. In: Italian Research on Antarctic Atmosphere (ed M. Colacino). SIF, Bologna, 209-225.
    • Cava, D., Schipa, S., Tagliazucca, M. and Giostra, U. 2004. Some characteristics of atmospheric boundary layer in an Antarctic coastal region. In: Italian Research on Antarctic Atmosphere and SCAR Workshop on Oceanography (ed. Colacino, M.). SIF, Bologna, 185-198.
    • Conway, T. J., Lang, P. M. and Masarie, K. A. 2010. Atmospheric Carbon Dioxide Dry Air Mole Fractions from the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network, 1968-2009, Version: 2010-09-08. Available at: ftp://ftp.cmdl.noaa. gov/ccg/co2/flask/month/. Accessed 12 Oct 2010.
    • Crawford, J. H., Davis, D. D., Chen, G., Buhr, M., Oltmans, S. and co-authors. 2001. Evidence for photochemical production of ozone at the South Pole surface. Geophys. Res. Lett. 28, 3641-3644.
    • Cristofanelli, P., Bonasoni, P., Calzolari, F., Bonafe`, U., Lanconelli, C. and co-authors. 2008. Analysis of near-surface ozone variations in Terra Nova Bay, Antarctica. Antarct. Sci. 20, 415-421.
    • Cundari, V., Colombo, T. and Ciattaglia, L. 1995. Thirteen years of atmospheric carbon dioxide measurements at Mt. Cimone station, Italy. Il Nuovo Cimento Series C 18, 33-47.
    • Davis, D., Nowak, J. B., Chen, G., Buhr, M., Arimoto, R. and co-authors. 2001. Unexpect high levels of NO observed at South Pole. Geophys. Res. Lett. 28, 3625-3628.
    • Davis, D., Chen, G., Buhr, M., Crawford, J., Lenshow, D. and co-authors. 2004. South Pole NOx chemistry: an assessment of factors controlling variability and absolute levels. Atmos. Environ. 38, 5375-5388.
    • Davolio, S. and Buzzi, A. 2002. Mechanisms of Antarctic katabatic currents near Terra Nova Bay. Tellus 54A, 187-204.
    • Dettinger, M. D. and Ghil, M. 1998. Seasonal and interannual variations of atmospheric CO2 and climate. Tellus 50B, 1-24.
    • Draxler, R. R. and Rolph, G. D. 2003. HYSPLIT (HYbrid SingleParticle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website http://www.arl.noaa.gov/ready/hysplit4.html. NOAA Air Resources Laboratory, Silver Spring.
    • Dorling, S. R., Davies, T. D. and Pierce, C. E. 1992. Cluster-analysis-a technique for estimating the synoptic meteorological controls on air and precipitation chemistry-method and applications. Atmos. Environ. 26, 2575-2581.
    • Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R. and coauthors. 2007. Changes in atmospheric constituents and in radiative forcing. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M. and co-editors). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 129-234.
    • Hara, K., Osada, K., Yabuki, M., Hayashi, M., Yamanouchi, T. and co-authors. 2008. Measurement of black carbon at Syowa station, Antarctica: seasonal variation, transport processes and pathways. Atmos. Chem. Phys. Discuss. 8, 9883-9929.
    • Heimann, M., Esser, G., Haxeltine, A., Kaduk, J., Kicklighter, D. W. and co-authors. 1998. Evaluation of terrestrial carbon cycle models trough simulation of the seasonal cycle of atmospheric CO2: first results of a model intercomparison study. Global Biogeochem. Cycles 12, 1-24.
    • Helmig, D., Oltmans, S. J., Carlson, D., Lamarque, J.-F., Jones, A. and co-authors. 2007. A review of surface ozone in the polar regions. Atmos. Environ. 41, 5138-5161.
    • Helmig, D., Johnson, B., Oltmans, S. J., Neff, W., Eisele, F. and coauthors. 2008. Elevated ozone in the boundary layer at South Pole. Atmos. Environ. 42, 2788-2803.
    • Jones, A. E., Weller, R., Anderson, P. S., Jacobi H.-W., Wolff, E. W. and co-authors. 2001. Measurements of NOx emissions from the Antarctic snowpack. Geophys. Res. Lett. 28, 1499-1502.
    • Jones, A. E. and Wolff, E. W. 2003. An analysis of the oxidation potential of the South Pole boundary layer and the influence of stratospheric ozone depletion. J. Geophys. Res. 108, D18, 4565, doi:10.1029/2003JD003379.
    • Knorr, W., Gobron, N., Scholze, M., Kaminski, T., Schnur, R. and coauthors. 2007. Impact of terrestrial biosphere carbon exchanges on the anomalous CO2 increase in 2002-2003. Geophys. Res. Lett. 34, L09703, doi:10.1029/2006GL029019.
    • Legrand, M., Preunkert, S., Jourdain, B., Galle´e, H., Goutail, F. and coauthors. 2009. Year-round record of surface ozone at coastal (Dumont d'Urville) and inland (Concordia) sites in East Antarctica. J. Geophys. Res. 114, D20306, doi:10.1029/2008JD011667.
    • Longinelli, A., Lenaz, R., Ori, C. and Selmo, E. 2005. Concentration and δ13C values of atmospheric CO2 from oceanic atmosphere trough time: polluted and non-polluted areas. Tellus 37B, 385-390.
    • Longinelli, A., Giglio, F., Langone, L., Lenaz, R., Ori, C. and co-authors. 2007. Atmospheric CO2 concentrations and δ13C values across the Antarctic Circumpolar Current between New Zealand and Antarctica. Tellus 59B, 130-137.
    • Murayama, S., Nakazawa, T., Tanaka, M., Aoki, S. and Kawaguchi, S. 1992. Variations of tropospheric ozone concentration over Syowa Station, Antarctica. Tellus 44B, 262-272.
    • Murayama, S., Nakazawa, T., Yamazaki, K., Aoki, S., Makino, Y. and co-authors. 1995. Concentration variations of atmospheric CO2 over Syowa station, Antarctica and their interpretation. Tellus 47B, 375-390.
    • Morimoto, S., Nakazawa, T., Aoki, S., Hashida, G. and Yamanouchi, T. 2003. Concentration variations of atmospheric CO2 observed at Syowa Station, Antarctica from 1984 to 2000. Tellus 55B, 170-177.
    • Oltmans, S. J., Lefohn, A. S., Harris, J. M., Galbally, I., Scheel, H. E. and co-authors. 2006. Long-term changes in tropospheric ozone. Atmos. Environ. 40, 3156-3173.
    • Roscoe, H. K., Kreher, K. and Friess, U. 2001. Ozone loss episodes in the free Antarctic troposphere, suggesting a possible climate feedback. Geophys. Res. Lett. 28, 2911-2914.
    • Roy, T., Rayner, P., Matear, R. and Francey, R. 2003. Southern hemisphere ocean CO2 uptake: reconciling atmospheric and oceanic estimates. Tellus 55B, 701-710.
    • Stohl, A. 1998. Computation, accuracy and applications of trajectoriesa review and bibliography. Atmos. Environ. 32, 947-966.
    • Stohl, A., and Sodemann, H. 2010. Characteristics of atmospheric transport into the Antarctic troposphere. J. Geophys. Res. 115, D02305, doi:10.1029/2009JD012536.
    • Suzuki, K., Yamanouchi, T., Hirasawa, N. and Yasunari, T. 2004. Seasonal variations of air transport in the Antarctic and atmospheric circulation in 1997. Polar Meteorol. Glaciol. 18, 98-113.
    • Tarasick, D.W. and Bottenheim, J.W. 2002. Surface ozone depletion episodes in the Arctic and Antarctic from historical ozonesonde records. Atmos. Chem. Phys. 2, 197-205.
    • Tarasova, O. A., Brenninkmeijer, C. A. M., Jockel, P., Zvyagintsev, A. M. and Kuznetsov, G. I. 2007. A climatology of surface ozone in the extra tropics: cluster analysis of observations and model results. Atmos. Chem. Phys. 7, 6099-6117.
    • Viola, A. P., Petenko, I., Mastrantonio, G., Argentini, S. and Bezverhnii, V. 1999. Diurnal variations of the temperature and their influence on wind regime in a confluence zone of Antarctica. Meteorol. Atmos. Phys 70, 133-140.
    • Wang, Y., Choi, Y., Zeng, T., Davis, D., Buhr, M. and co-authors. 2008. Assessing the photochemical impact of snow NOx emissions over Antarctica during ANTCI 2003. Atmos. Environ. 42, 2849-2863.
    • Wessel, S., Aoki, S., Winkler, P., Weller, R., Hrber, A. and co-authors. 1998. Tropospheric ozone depletion in polar regions-a comparison of observations in the Artic and Antarctic. Tellus 50B, 34-50.
    • WMO-World Meteorological Organization. 2010. WMO WDCGG Data Summary - WDCGG No. 32. Japan Meteorological Agency in collaboration with WMO.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from