LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Gagné, Stéphanie; Laakso, Lauri; Petäjä, Tuukka; Kerminen, Veli-Matti; Kulmala, Markku (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects:
In this paper, we investigate the participation of ion-induced nucleation in atmospheric new-particle formation. We present one year of Ion-DMPS data from the SMEAR II station in Hyytiälä, southern Finland (22 September 2005 to 22 September 2006). We measured continuously the concentrations of ions in ambient and charge equilibrated air in seven size bins over a diameter range 3–15 nm. All new-particle formation event days were classified according to observed particle charging states and analysed based on a new theoretical tool by which the measured charging states can be extrapolated down to smaller particle sizes. We investigated the contribution of ion-induced nucleation for both positively and negatively charged particles. The median contribution of ion-induced nucleation at 2 nm during the one year of measurements was around 6.4% with a median absolute deviation (MAD) of 2.0%,. The smallest contribution was 1.7% (MAD = 1.6%) whereas the maximum was 16.5% (MAD = 2.2%). We also analysed the data on a seasonal basis and found the largest contribution of ion-induced nucleation during summer (7.6%) and lower during the rest of the year (4.9%).DOI: 10.1111/j.1600-0889.2008.00347.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Chung, C. E., Ramanathan, V., Kim, D. and Podgorny, I. A. 2005. Global anthropogenic aerosol direct forcing derived from satellite and ground-based observations. J. Geophys. Res. 110, D24207, doi:10.1029/2005JD006356.
    • Dal Maso, M., Kulmala, M., Riipinen, I., Wagner, R., Hussein, T. and coauthors. 2005. Formation and growth of fresh atmospheric aerosols: eight years of aerosol size distribution data from SMEAR II, Hyytia¨la¨, Finland. Boreal Environ. Res. 10, 323-336.
    • Donaldson, K., Li, X. Y. and MacNee, W. 1998. Ultrafine (nanometre) particle mediated lung injury. J. Aerosol Sci. 29, 553- 560.
    • Hirsikko, A., Laakso, L., Ho˜rrak, U., Aalto, P. P., Kerminen, V.-M. and co-authors. 2005. Annual and size dependent variation of growth rates and ion concentrations in boreal forest. Boreal Environ. Res. 5, 357- 370.
    • Hoppel, W. and Frick, G. 1986. Ion-aerosol attachment coefficients and steady-state charge distribution on aerosols in a bipolar environment. Aerosol. Sci. Technol. 5, 1-21.
    • Iida, K., Stolzenburg, M., McMurry, P., Dunn, M., Smith, J. and coauthors. 2006. Contribution of ion-induced nucleation to new particle formation: methodology and its application to atmospheric observations in Boulder, Colorado. J. Geophys. Res. 111, D23201, doi: 10.1029/2006JD007167.
    • Kerminen, V.-M., Anttila, T., Peta¨ja¨, T., Laakso, L., Gagne´, S. and coauthors. 2007. Charging state of the atmospheric nucleation mode: implications for separating neutral and ion-induced nucleation. J. Geophys. Res. 112, D21205, doi:10.1029/2007JD008649.
    • Kulmala, M.. 2003. How particles nucleate and grow. Science 302, 1000- 1001.
    • Kulmala, M., Vehkama¨ki, H., Peta¨ja¨, T., Dal Maso, M., Lauri, A. and co-authors. 2004. Formation and growth rates of ultrafine atmospheric particles: a review of observations. J. Aerosol Sci. 35, 143- 176.
    • Kulmala, M., Riipinen, I., Sipila¨, M., Manninen, H. E., Peta¨ja¨, T. and coauthors. 2007. Toward direct measurment of atmospheric nucleation. Science 318, 89-92.
    • Laakso, L., Gagne´, S., Peta¨ja¨, T., Hirsikko, A., Aalto, P. P. and co-authors. 2007. Detecting charging state of ultra-fine particles: instrumental development and ambient measurements. Atmos. Chem. Phys. 7, 1333- 1345.
    • Lohmann, U. and Feichter, J. 2005. Global indirect aerosol effects: a review. Atmos. Chem. Phys. 5, 715-737.
    • Ma¨kela¨, J. M., Salm, J., Smirnov, V. V., Koponen, I., Paatero, J. and coauthors. 2003. Electrical charging state of fine and ultrafine particles in boreal forest air. J. Aerosol Sci. 32, S149-150.
    • Penner, J. E., Quaas, J., Storelvmo, T., Takemura, T., Boucher, O. and co-authors. 2006. Model intercomparison of indirect aerosol effects. Atmos. Chem. Phys. 6, 3391-3405.
    • Pope, C. A., III and Dockery, D. W. 2006. Health effects of fine particulate air pollution: lines that Connect. J. Air Waste Manage. Assoc. 56, 709-742.
    • Reischl, G. P., Ma¨kela¨, J. M., Karch, R. and Necid, J. 1996. Bipolar charging of ultrafine particles in the size range below 10 nm. J. Aerosol. Sci. 27, 931-949.
    • Riipinen, I., Sihto, S.-L., Kulmala, M., Arnold, F., Dal Maso, M. and coauthors. 2007. Connections between atmospheric sulphuric acid and new particle formation during QUEST III-IV campaigns in Heidelberg and Hyytia¨la¨. Atmos. Chem. Phys. 7, 1899-1914.
    • Seinfeld, J. H. and Pandis, S. N. 1998. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Wiley, New York.
    • Spracklen, D. V., Carslaw, K., Kulmala, M., Kerminen, V.-M., Mann, G. W. and co-authors. 2006. The contribution of boundary layer nucleation events to total particle concentrations on regional and global scales. Atmos. Chem. Phys. 6, 5631-5648.
    • Stolzenburg, M. and McMurry, P. 1991. An ultrafine aerosol condensation nucleus counter. Aerosol Sci. Technol. 14, 48- 65.
    • Tammet, H. 2006. Continuous scanning of the mobility and size distribution of charged clusters and nanometer particles in atmospheric air and the Balanced Scanning Mobility Analyzer BSMA. Atmos. Res. 82, 523-535.
    • Twomey, S. 1991. Aerosols, clouds and radiation. Atmos. Environ. 25A, 2435-2442.
    • Vana, M., Tamm, E., Ho˜rrak, U., Mirme, A., Tammet, H. and co-authors. 2006. Charging state of atmospheric nanoparticles during the nucleation burst events. Atmos. Res. 82, 536-546.
    • Wiedensohler, A. 1988. An approximation of the bipolar charge distribution for particles in the submicron range. J. Aerosol Sci. 19, 387- 389.
    • Winklmayr, W., Reischl, G., Lindner, A. and Berner, A. 1991. A new electromobility spectrometer for the measurement of aerosol size distributions in the size range from 1 to 1000 nm. J. Aerosol Sci. 22, 289-296.
    • Yu, F. and Turco, R. 2001. From molecular clusters to nanoparticles: role of ambient ionization in tropospheric aerosol formation. J. Geophys. Res. 106, 4797-4817.
    • Yu, F., Wang, Z., Luo, G. and Turco, R. 2006. Ion-mediated nucleation as an important global source of tropospheric aerosols. Atmos. Chem. Phys. Dicuss. 7, 13597-13626.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from