LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Guillaume, B.; Liousse, C.; Rosset, R.; Cachier, H.; Van Velthoven, P.; Bessagnet, B.; Poisson, N. (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects:
Few global aerosol models deal with size differentiated inorganic/organic particles. Among them, still fewer ones explicitly treat secondary organic aerosol (SOA) formation. In this context, we have coupled the global chemistry-transport model (CTM) TM4 (Van Velthoven et al., 1996) and the aerosol sectional model ORISAM (ORganic and Inorganic Sectional Aerosol Model, Bessagnet et al., 2002). This new aerosol model ORISAM-TM4 can accommodate aerosol size distributions with a variable number of diameter sections (bins) between 0.04 μm and over 10 μm and detailed organic/inorganic chemistry coupled with optional gas schemes. Two model versions are presented: a tracer version and a fully detailed eight-bin version with SOA formation. Focus is made on carbonaceous BC (black carbon) and OC (organic carbon) aerosols. First, significant developments both in ORISAM and in TM4 are discussed in line with the incorporation of updated emission inventories of BC and primary OC (OCp). Then, general comparisons are made between simulated BC and OC concentrations in air and precipitation against worldwide measurements. Also for BC, sensitivity tests using different updated fossil fuel emission inventories are focused over Europe, where emission controls make great strides. The tracer version appears generally satisfactory for BC mostly at background and remote sites, but not for total OC. For this latter, quite significant improvements result from the incorporation of SOA formation in ORISAM-TM4, instead of estimating OC as being simply proportional to OCp, as done in most existing models. Conclusions and prospects are then given.DOI: 10.1111/j.1600-0889.2006.00246.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Adams, P. J. and Seinfeld, J. H. 2002. Predicting global aerosol size distributions in general circulation models. J. Geophys. Res. 107(D19), 4370, doi:10.1029/2001JD001010.
    • Adams, P. J., Seinfeld, J. H. and Koch, D. M. 1999. Global concentrations of tropospheric sulphate, nitrate and ammonium aerosol simulated in a GCM. J. Geophys. Res.. 104, 13791-13823.
    • Andreae, M. O. and Merlet, P. 2001. Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles. 15, 955-966.
    • Bessagnet, B., Hodzic, A., Vautard, R., Beekmann, M., Cheinet, S. and co-authors. 2004. Aerosol modelling with CHIMERE- preliminary evaluation at the continental scale. Atmos. Environ. 38, 2803-2817.
    • Binkowski, F. S. and Shankar, U. 1995. The regional particulate matter model - 1. Model description and preliminary results. J. Geophys. Res. 100, 26191-26209.
    • Bond, T. C. and Sun, H. 2005. Can reducing black carbon emissions counteract global warming?. Environ. Sci. Technol.. 39, 5921-5926.
    • Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J.-H. and co-authors. 2004. A technology-based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res., 109, D14203, doi:10.1029/2003JD003697.
    • Cachier, H. 1998. Carbonaceous combustion aerosols. In: Atmospheric particles (eds R. M. Harrison and R. Van Grieken). John Wiley and Sons Ltd, New York. 295-348.
    • Chin, M., Jacob, D. J., Gardner, G. M., Foreman-Fowler, M. S., Spiro, P. A. and co-authors, 1996. A global three-dimensional model of tropospheric sulphate. J. Geophys. Res. 101, 18667-18690.
    • Cooke, W. F., Liousse, C., Cachier, H. and Feichter, J. 1999. Construction of a 1◦ × 1◦ fossil-fuel emission dataset for carbonaceous aerosol and implementation en the ECHAM4 model. J. Geophys. Res. 104, 22137-22162.
    • Cooke, W. F., Ramaswamy, V. and Kasibhatla, P. 2002. A general circulation model study of the global carbonaceous aerosol distribution. J. Geophys. Res. 107(D16), doi:10.1029/2001JD001274.
    • Cousin, F., Liousse, C., Cachier, H., Bessagnet, B., Guillaume, B. and co-authors. 2005. Aerosol modelling and validation during Escompte 2001. Atmos. Environ. 39(8), 1539-1550.
    • Dana, M. T. and Hales, J. M. 1976. Statistical aspects of the washout of polydispers aerosols. Atmos. Environ. 10, 45-50.
    • Dentener, F. J. and Crutzen, P. J. 1994. A global 3D model of the ammonia cycle. J. Atmos. Chem. 19, 331-369.
    • Dusek, U., Frank, G. P., Hildebrandt, L., Curtius, J., Schneider, J. and co-authors. 2006. Size matters more than chemistry for cloud-nucleating ability of aerosol properties. Science. 312, 1375- 1378.
    • Ervens, B., Feingold, G., Frost, G. J., Kreidenweis, S. M. 2004. A modelling study of aqueous production of dicarboxylic acids: 1/ Chemical pathways and speciated organic mass production. J. Geophys. Res. 109, D15205.
    • Fuzzi, S., Andreae, M. O., Huebert, B. J., Kulmala, M., Bond, T. C. and co-authors. 2005. Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate and global change. Atmos. Chem. Phys. Discuss. 5, 11729-11780.
    • Ganzeveld, L., Lelieveld, J. and Roelofs, G.-J. 1998. A dry deposition parameterization for sulfur oxides in a chemistry and general circulation model. J. Geophys. Res. 103, 5679-5694.
    • Gelbard, F., Tambour, Y. and Seinfeld, J. H. 1980. Sectional representations for simulating aerosol dynamics. J. Colloid Interface Sci. 76, 541-556.
    • Guelle, W., Balkanski, Y., Dibb, J., Schulz, M. and Dulac, F. 1998. Wet deposition in a global size-dependent aerosol transport model. 2, Influence of the scavenging scheme on 210Pb vertical profiles, surface concentrations, and deposition. J. Geophys. Res.. 103, 38875- 28891.
    • Guillaume, B. and Liousse, C. 2006. Development of carbonaceous aerosol emission inventories from fossil fuel over Europe at continental scale with focus on traffic at national and regional scales. ADEME (French Ministery of Environment and Sustainable Development) Report. Project 0262050.
    • Haywood, J. M., Roberts, D. L. Slingo, A., Edwards, J. M. and Shine, K. P. 1997. General circulation model calculations of the direct radiative forcing by anthropogenic sulphate and fossil-fuel soot aerosol. J. Clim. 10, 1562-1577.
    • Heald, C. L., Jacob, D. J., Park, R. J., Russell, L. M., Huebert, B. J. and co-authors. 2005. A large organic aerosol source in the free troposphere missing from current models. Geophys. Res. Lett. 32, L18809, doi:10.1029/2005GL023831.
    • Heintzenberg, J., Charlson, R. J., Clarke, A. D., Liousse, C., Ramaswamy, V. and co-authors. 1997. Measurements and modelling of aerosol single-scattering albedo: Progress, problems and prospects. Beitr. Phys. Atmos. 70, 249-263.
    • Hertel, O., Berkowicz, R., Christensen, J. and Hov, O. 1993. Test of two numerical schemes for use in atmospheric transport-chemistry models. Atmos. Environ. 27A, 2591-2611.
    • Heymsfield, A. J. and Donner, L. J. 1990. A scheme for parameterizing ice-cloud water content in general circulation models. J. Atmos. Sci. 47, 1865-1877.
    • Houweling, S., Dentener, F. and Lelieveld, J. 1998. The impact of nonmethane hydrocarbon compounds on tropospheric photochemistry. J. Geophys. Res. 103, 10673-10696.
    • Jacob, D. J. 2000. Heterogeneous chemistry and tropospheric ozone. Atmos. Environ. 34, 2131-215.
    • Jacobson, M. Z. 1999. Fundamentals of Aerosol Modelling. Cambridge University Press, Cambridge. 526-537.
    • Jacobson, M. Z. 2001a. GATOR-GCMM: A global- through urban-scale air pollution ad weather forecast model, 1. Model design and treatment of subgrid soil, vegetation, roads, rooftops, water, sea ice and snow. J. Geophys. Res.. 106, 5385-5402.
    • Jacobson, M. Z. 2001b. Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols. J. Geophys. Res. 106, 1551-1568.
    • Jacobson, M. Z. 2002. Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming. J. Geophys. Res.. 107(D19), 4410.
    • Jacobson, M. Z. 2005. A solution to the problem of non-equilibrium acid/base gas-particle transfer at long time step. Aerosol Sci. Tech. 39, 92-103.
    • Jeuken, A., Veefkind, J. P., Dentener, F., Metzger, S. and Gonzalez, C. R. 2001. Simulation of the aerosol optical depth over Europe for August 1007 and a comparison with observations. J. Geophys. Res.. 106, 28295-28311.
    • Junker, C. and Liousse, C. 2006. A global emission inventory of carbonaceous aerosol from historic records of fossil fuel and biofuel consumption for the period 1860-1997. Atmos. Chem. Phys. Discuss. 6, 4897-4927.
    • Kahnert, E. 2002. Measurements of particulate matter. Status report 2002, EMEP/ CCC-Report 4. (http://www.nilu.no/projects/ CCC/onlinedata/pm/index.html)
    • Kulmala, M., Laaksonen, A. and Pirjola, L. 1998. Parameterizations for sulfuric acid/water nucelation rates. J. Geophys. Res.. 103, 8301- 8308.
    • Lavoue, D., Liousse, C., Cachier, H., Stocks, B. J. and Goldammer, J. G. 2000. Modeling of carbonaceous particles emitted by boreal and temperate wild-fires at northern latitudes. J. Geophys. Res. 105, 26871-26890.
    • Lelieveld, co-authors. 2001. The Indian ocean experiment: widespread air pollution from South and Southeast Asia. Science 291, 1031-1036.
    • Lim, H. J., Carlton, A. G. and Turpin, B. J. 2005. Isoprene forms secondary organic aerosol through cloud processing: model simulations. Environ. Sci. Technol. 39, 4441-4446.
    • Liousse, C., Penner, J. E., Chuang, C., Walton, J. J., Eddleman, H. and co-authors. 1996. A global three-dimensional model study of carbonaceous aerosols. J. Geophys. Res. 105, 26871-26890.
    • Liousse, C., Andreae, M. O., Artaxo, P., Barbosa, P., Cachier, H. and coauthors. 2004. Deriving global quantitative estimates for spatial and temporal distributions of biomass burning emissions. In: Emissions of Atmospheric Trace Compounds. (eds C. Granier, P. Artaxo and C. Reeves). Kluwer Academic Publishers, Dordrecht, The Netherlands, 544.
    • Liousse, C., Michel, C., Bessagnet, B., Cachier, H. and Rosset, R. 2005. 0D-modelling of carbonaceous aerosols over greater paris focusing on the organic particle formation. J. Atmos. Chem. 51(2), 207-221.
    • Liu, X., Penner, J. E. and Herzog, M. 2005. Global modeling of aerosol dynamics: Model description, evaluation, and interactions between sulfate and nonsulfate aerosols. J. Geophys. Res. 110, D18206, doi:10.1029/2004JD005674.
    • Lohmann, U., Feichter, J., Chuang, C. C. and Penner, J. E. 1999. Predicting the number of cloud droplets in the ECHAM-GCM. J. Geophys. Res. 104, 9169-9198.
    • Martin-Reviejo, M. and Wirtz, K. 2005. Is benzene a precursor for secondary organic aerosol?. Environ. Sci. Technol. 39, 1045-1054.
    • Ming, Y., Ramaswamy, V., Leo J., Donner and Phillips, V. T. J. 2006. A new parameterization of cloud droplet activation applicable to general circulation models. J. Atmos. Sci.. 63(4), 1348-1356.
    • Nenes, A., Pandis, S. N. and Pilinis, C. 1998. ISORROPIA: a new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols. Aqua. Geochem. 4, 123-152.
    • Nenes, A. and Seinfeld, J. H. 2003. Parametrization of cloud drop formation in global climate models. J. Geophys. Res. 108, 4415. doi:10.1029/2002JD002101.
    • Odum, J. R., Hoffman, T., Bowman, F., Collins, D., Flagan, R. C. and coauthors. 1996. Gas-Particle partitioning and secondary aerosol yield. Environ. Sci. Tech. 30, 2580-2585.
    • Olivier, J., Peters, J., Granier, C., Petron, G., Mu¨ller, J.-F. and coauthors. 2003. Present and future surface emissions of atmospheric compounds. POET report #2, EU project EVK2-1999-00011.
    • Olivier, J. G. J., Bouwman, A. F., Berdowski, J. J. M., Veldt, C., Bloos, J. P. J. and co-authors. 1999. Sectoral emission inventories of greenhouse gases for 1990 on a per country basis as well as on 1◦ × 1◦ degrees. Environ. Sci. Policy. 2, 241-263.
    • Olson, J. S., Watts, J. and Allison, L. 1983. Carbon in live vegetation of major world ecosystems. W-7405-ENG-26, U.S. Department of Energy, Oak Ridge National Laboratory.
    • Pandis, S. N., Harley, R. A., Cass, G. R. and Seinfeld, J. H. 1992. Secondary organic aerosol formation and transport. Atmos. Environ. 26A, 2269-2282.
    • Penner, J. E., Dickinson, R. E. and O'Neill, C.A. 1992. Effects of aerosol from biomass burning on the global radiation budget. Science. 256, 1432-1433.
    • Pilinis, C., Capaldo, K., Nenes, A. and Pandis, S. N. 2000. MADM - A new multicomponent aerosol dynamics model. Aerosol Sci. Tech. 32, 482-502.
    • Po¨schl, U., Letzel, T., Schauer, C. and Niessner, R.2001. Interaction of ozone and water vapour with spark discharge soot aerosol coated with benzo[a]pyrene: O3 and H2O adsorption, benzo[a]pyrene degradation and atmospheric implications. J. Phys. Chem. A. 105, 4029-4041.
    • Pun, B. K., Wu, S.-Y., Seigneur, C., Seinfeld, J. H., Griffin, R. J. and coauthors. 2003. Uncertainties in modelling secondary organic aerosols : three-dimensional modelling studies on Nashville/Tennessee. Environ. Sci. Technol. 37, 3647-3661.
    • Pun, B. K., Seigneur, C., Vijayaraghavan, K., Wu, S., Chen, S. and co-authors. 2006. Modeling regional haze in the BRAVO study using CMAQ-MADRID: 1. Model evaluation. J. Geophys. Res. 111, D06302, doi:10.1029/2004JD005608.
    • Riemer, N., Vogel, H. and Vogel, B. 2004. Soot ageing time scales in polluted regions during day and night. Atmos. Chem. Phys. 4, 1885- 1893.
    • Rodriguez, M. A. and Dabdub, D. 2004. IMAGE-SCAPE2: A modelling study of size- and chemically resolved aerosol thermodynamics in a global chemical transport model. J. Geophys. Res. 109, D02203, doi:10.1029/2003JD003639.
    • Russell, G. L. and Lerner, J. A. 1981. A new finite-differencing scheme for the tracer transport equations. J. Appl. Met. 20, 1483-1498.
    • Schaap, M., GDenier Van Der on, H. A. C., Dentener, F. J., Visschedijk, A. J. H., Van Loon, M. and co-authors. 2004. Anthropogenic black carbon and fine aerosol distribution over Europe. J. Geophys. Res. 109, D18207. doi:10.1029/2003JD004330.
    • Seinfeld, J. H. and Pandis, S. N. 1998. Atmospheric Chemistry and Physics. John Wiley and Sons, New York.
    • Slinn, W. G. N. 1977. Some approximations for the wet and dry removal of particles and gases from the atmosphere. Water, Air, Soil Pollut. 7, 513-543.
    • Solmon, F., Giorgi, F. and Liousse, C. 2006. Development of a regional anthropogenic aerosol model for climate studies: application and validation over a European/African domain. Tellus 58B, 51-72.
    • Spracklen, D. V., Pringle, K. J., Carslaw, K. S., Chipperfield, M. P. and Mann, G. W. 2005. A global off-line model of size-resolved aerosol microphysics: I. Model development and prediction of aerosol properties. Atmos. Chem.. Phys. Discuss. 5, 179-215.
    • Stier, P., Feichter, J., Kinne, S., Vignati, E., Wilson, J. and co-authors. 2004. The aerosol-climate model ECHAM5-HAM.. Atmos. Chem. Phys. Discuss. 4, 5551-5623.
    • Sundquist, H., Berge, E. and Kristjansson, J. E. 1989. Condensation and cloud parameterization studies with a mesoscale numerical prediction model. Mon. Wea. Rev. 117, 1641-1657.
    • Tegen, I. and Lacis, A. A. 1996. Modelling the particle size distribution and its influence on the radiative properties of mineral dust aerosol. J. Geophys. Res. 101, 19237-19244.
    • Tsigaridis, K. and Kanakidou, M. 2003. Global modelling of secondary organic aerosol in the troposphere: sensitivity analysis. Atmos. Chem. Phys. 3, 1849-1869.
    • Van Velthoven, P. F. J. and Kelder, H. 1996. Estimates of StratosphereTroposphere Exchange: Sensitivity to model formulation and horizontal resolution. J. Geophys. Res. 101, 1429-1434.
    • Vignati, E., Wilson, J. and Stier, P. 2004. M7: An efficient size-resolved aerosol microphysics module for large-scale aerosol transport models. J. Geophys. Res. 109(D22202), doi:10.1029/2003JD004485.
    • Warren, D. R. and Seinfeld, J. H. 1985. Simulations of aerosol sizedistribution evolution in systems with simultaneous nucleation, condensation and coagulation. Aerosol Sci. Tech. 4, 31-43.
    • Wesely, M. L. and Hicks, B. B. 2000. A review of the current status of knowledge on dry deposition. Atmos. Environ. 34, 2261- 2282.
    • Wexler, A. S. and Seinfeld, J. H. 1990. The distribution of ammonium salts among a size and composition dispersed aerosol. Atmos. Environ. 24A, 1231-1246.
    • Wexler, A. S., Lurmann, F. W. and Seinfeld, J. H. 1994. Modeling urban and regional aerosols, 1, Model development. Atmos. Environ. 28, 531-546.
    • Zhang, Y., Pun, B., Vijayaraghavan, K. and co-authors. 2004. Development and application of the Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution (MADRID). J. Geophys. Res. 109(D01202), doi: 10.1029/2003JD003501.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from