Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Gough, William A.; Allakhverdova, Tatiana (2011)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article
Tunable parameters in an ocean general circulation model are assessed as modifiers to themodel response to several climate change scenarios. For the current climate scenario it is foundthat vertical diffusivity plays a dominant rôle as expected. An analysis of the horizontal diffusivityvariation suggests that use of the peak value of the overturning streamfunction is a misleadingindicator of model flow strength. For the warming and cooling scenarios vertical and horizontaldiffusivity variations dominated the equilibria response. However, these tunable parameters areof minor significance in the transient response in the cooling scenarios. The diffusively dominantwarming scenarios, in contrast, very much depend on the magnitude of the vertical diffusivity.This has important implications for the use of coarse resolution models in coupled atmosphereoceanmodel climate change simulations.DOI: 10.1034/j.1600-0870.1998.00009.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Bryan, F. 1987. Parameter sensitivity of primitive equation ocean general circulation models. J. Phys. Oceanogr. 17, 970-985.
    • Bryan, K. 1969. A numerical method for the study of the circulation of the world ocean. J. Comput. Phys. 4, 347-376.
    • Bryan, K. 1984. Accelerating convergence to equilibrium of ocean-climate models. J. Phys. Oceanogr. 14, 666-673.
    • Bryan, K., Komro, F. G., and Rooth, C. 1984. The ocean's transient response to global surface temperature anomalies. In: Climate processes and climate sensitivity. Maurice Ewing, vol. 5, J. E. Hansen and T. Takahashi (eds.). Am. Geophys. Union, Washington, D. C., pp. 29-38.
    • Bryan, K. and R. Spelman, 1985. The ocean's response to a CO2 induced warming. J. Geophys. Res. 90, 11 679-11 688.
    • Cox, M. 1984. A primitive equation, three dimensional model of the ocean. GFDL Ocean T ech. Report No. 1. Princeton, New Jersey.
    • Danabasoglu, G., McWilliams, J., and Gent, P. 1994. The role of mesoscale tracer transports in the general circulation of the oceans. Science 254, 1123-1126.
    • England, M. 1995. Using chlorofluorocarbons to assess ocean climate models. Geophys. Res. L ett. 22, 3051-3054.
    • Gent, P., Willebrand, J., McDougall, T., and McWilliams, J. 1995. Parameterizing eddy-induced transports in an ocean general circulation models. J. Phys. Oceanogr. 25, 463-474.
    • Gough, W. and Lin, C. 1992. The response of an ocean general circulation model to long time-scale surface temperature anomalies. Atmos.-Ocean 30, 653-674.
    • Gough, W. and Welch, W. 1994. Parameter space exploration of an ocean general circulation model using an isopycnal mixing parameterization. J. Mar. Res. 52, 773-796.
    • Gough, W. and Lin, C. 1995. Isopycnal mixing and the Veronis eVect in an ocean general circulation model. J. Mar. Res. 53, 189-199.
    • Gough, W. 1997. Convective adjustment and isopycnal mixing in an ocean general circulation model. Atmos. Ocean, in press.
    • Haney, R. 1971. Surface thermal boundary conditions for ocean circulation models. J. Phys. Oceanogr. 1, 241-248.
    • Houghton, J., Jenkins, G. and Ephraums, J. (eds.). 1990. Climate change. The IPCC scientific assessment. Cambridge University Press. Cambridge, UK, 365 pp.
    • Kattenberg, A., Giorgi, F., Grassl, H., Meehl, G., Mitchell, J., StouVer, R., Tokiada, T., Weaver, A. and Wigley, T. 1996. Climate models - predictions of future climate. In: Climate change 1995: The science of climate change. Cambridge University Press, Cambridge, UK, 549 pp.
    • Ledwell, J., Watson, A. and Law, S. 1993. Evidence for slow mixing across the pycnocline from an open ocean tracer release experiment. Nature 364, 701-703.
    • Levitus, S. 1982. Climatological atlas of the world oceans. NOAA Prof. Paper 13, Washington, D. C.
    • McDougall, T. and Church, J. 1985. Pitfalls with numerical representation of isopycnal and diapycnal mixing. J. Phys. Oceanogr. 16, 196-199.
    • Najjar, R. 1992. Marine biogeochemistry. In: Climate system modelling, Trenberth, K. (ed.). Cambridge University Press, Cambridge, pp. 241-282.
    • Pacanowski, R., K. Dixon and A. Rosati, 1991. The GFDL modular ocean model user guide, GFDL Group T echnical Report #2, 44 p.
    • Robitaille, D. and Weaver, A. 1995. Validation of subgrid scale mixing schemes using CFCs in a global ocean general circulation model. Geophys. Res. L ett. 22, 2917-2920.
    • Sarmiento, J. 1983. A simulation of bomb tritium entry into the Atlantic Ocean. J. Phys. Oceanogr. 13, 1924-1939.
    • Toggweiler, R., Dixon, K., and Bryan, K. 1989. Simulations of radiocarbon in a coarse-resolution world ocean model. (2) Distribution of bomb-produced carbon 14. J. Geophys. Res. 94, 8243-8264.
    • Veronis, G. 1975. T he roˆle of models in tracer studies in numerical models of ocean circulation. National Academy of Sciences, 133-146.
    • Winton, M. 1996. On the role of horizontal boundaries in parameter sensitivity and decadal-scale variability of coarse-resolution ocean general circulation model. J. Phys. Oceanogr. 26, 289-304.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from