Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Grisogono, Branko; Oerlemans, Johannes (2011)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article

Classified by OpenAIRE into

arxiv: Physics::Fluid Dynamics
Pure katabatic flow is studied with a Prandtl-type model allowing eddy diffusivity/conductivity to varywith height. Recently we obtained an asymptotic solution to the katabatic flow assuming the validity ofthe WKB method, which solves the fourth-order governing equation coupling the momentum and heattransfer. The WKB approximation requires that eddy diffusivity may vary only gradually compared tothe calculated quantities, i.e., potential temperature and wind speed. This means that the scale heightfor eddy diffusivity must be higher than that for the calculated potential temperature and wind speed.The ratio between the maximum versus the mean eddy diffusivity should be less than that for thescale heights of the diffusivity versus the calculated quantities (temperature and wind). Here we justify(a posteriori) the WKB method independently based on two arguments: (i) a scaling argument and (ii )a philosophy behind a higher-order closure turbulence modeling. Both the eddy diffusivity maximumand the level of the relevant maximum turbulent kinetic energy are above the strongest part of the nearsurfaceinversion and the low-level jet which is required for the WKB validity. Thus, the numericalmodeling perspective lends credibility to the simple WKB modeling. This justification is importantbefore other data sets are analyzed and a parameterization scheme written.DOI: 10.1034/j.1600-0870.2002.201399.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Arritt, R. W. and Pielke, R. A. 1986. Interactions of nocturnal slope flows with ambient winds. Boundary-Layer Meteorol. 37, 183-195.
    • Bender, C. M. and Orszag, S. A. 1978. Advanced mathematical methods for scientists and engineers. McGraw-Hill, New York, 593 pp.
    • Berger, B. W. and Grisogono, B. 1998. The baroclinic, variable eddy viscosity Ekman layer. An approximate analytical solution. Boundary-Layer Meteorol. 87, 363-380.
    • Defant, F. 1949. Zur theorie der Hangwinde, nebst bemerkungen zur Theorie der Bergund Talwinde. Arch. Meteor. Geophys. Biokl. Ser. A1, 421-450.
    • Denby, B. 1999. Second-order modelling of turbulence in katabatic flows. Boundary-Layer Meteorol. 92, 67-100.
    • Denby, B. and Smeets, C. J. P. P. 2000. Derivation of turbulent flux profiles and roughness lengths from katabatic flow dynamics. J. Appl. Meteorol. 39, 1601-1612.
    • Egger, J. 1990. Thermally forced flows: theory. In, Atmospheric processes over complex terrain. (ed. W. Blumen. Am. Meteorol. Soc., Washington, DC, 43-57.
    • Enger, L. 1990. Simulation of dispersion in moderately complex terrain Part A. The fluid dynamics model. Atmos. Environ. 24A, 2431-2446.
    • Gill, A. E. 1982. Atmosphere-ocean dynamics,. Academic Press, New York, 662 pp.
    • Grisogono, B. 1994. Dissipation of wave drag in the atmospheric boundary layer. J. Atmos. Sci. 51, 1237-1243.
    • Grisogono, B. 1995a. A generalized Ekman layer profile within gradually-varying eddy diffusivities. Quart. J. R. Meteorol. Soc. 121, 445-453.
    • Grisogono, B. 1995b. Wave-drag effects in a mesoscale model with a higher-order closure turbulence scheme. J. Appl. Meteorol. 34, 941-954.
    • Grisogono, B. and Oerlemans, J. 2001a. Katabatic flow: analytic solution for gradually varying eddy diffusivities. J. Atmos. Sci. 58, 3349-3354.
    • Grisogono, B. and Oerlemans, J. 2001b. A theory for the estimation of surface fluxes in simple katabatic flows. Quart. J. R. Meteorol. Soc. 127, 2725-2739.
    • Holton, J. R. 1992. An introduction to dynamic meteorology,. Academic Press, New York, 3rd edn, 511 pp.
    • Hunt, J.C.R., Stretch D. D. and Britter, R. E. 1988. Length scales in stably stratified turbulent flows and their use in turbulence models. In: Stably stratified flow and dense gas dispersion.(ed. J. S. Puttock). Clarendon Press, Oxford, 285-321.
    • Laprise, J. P. R. 1993. An assessment of the WKBJ approximation to the vertical structure of linear mountain waves: implications for gravity-wave drag parameterization. J. Atmos. Sci. 50, 1469-1487.
    • Mahrt, L. 1982. Momentum balance of gravity flows. J. Atmos. Sci. 39, 2701-2711.
    • Mahrt, L. 1998. Stratified atmospheric boundary layers and breakdown of models. Theoret. Comput. Fluid Dyn. 11, 263-279.
    • Munro, D. S. and Davies, J. A. 1978. On fitting the loglinear model to wind speed and temperature profiles over a melting glacier. Boundary-Layer Meteorol. 15, 423-437.
    • Nappo, C. J. and Rao, K. S. 1987. A model study of pure katabatic flow. Tellus 39A, 61-71.
    • O'Brien, J. J. 1970. A note on the vertical structure of the eddy exchange coefficient in the planetary boundary layer. J. Atmos. Sci. 27, 1213-1215.
    • Oerlemans, J. 1998. The atmospheric boundary layer over metling glaciers. In: Clear and cloudy boundary layers. Royal Netherlands Academy of Arts and Sciences, Amsterdam,129-153.
    • Oerlemans, J. and Fortuin, J. P. F. 1992. Sensitivity of glaciers and small ice caps to greenhouse warming. Science, 258, 115-117.
    • Oerlemans, J., Bjo¨rnsson, H., Kuhn, M., Obleitner, F., Palsson, F., Smeets, P., Vugts, H. F. and de Wolde, J. 1999. A glacio-meteorological experiment on Vatnajo¨kull, Iceland, Summer 1996. Boundary-Layer Meteorol. 92, 3- 26.
    • Pahlow, M., Partange, M. B., and Porte´-Agel, F. 2001. On Monin-Obukhov similarity in the stable atmospheric boundary layer. Boundary-Layer Meteorol. 99, 225- 248.
    • Pawlak, G. and Armi, L. 2000. Mixing and entrainment in developing stratified currents. J. Fluid Mech. 424, 45-73.
    • Pielke, R. A. 1984. Mesoscale numerical modeling. Academic Press, New York, 612 pp.
    • Prandtl, L. 1942. Fu¨hrer durch die Stro¨mungslehre. Vieweg und Sohn, Braunschwieg, 373-375.
    • Schumann, U. and Gerz, T. 1995. Turbulent mixing in stably stratified shear flows. J. Appl. Meteorol. 34, 33-48.
    • Smeets, C. J. P. P., Duynkerke P. G. and Vugts, H. F. 2000. Turbulence characteristics of the stable boundary layer over a mid-latitude glacier. Part II: Pure katabatic forcing conditions. Boundary-Layer Meteorol. 97, 73-107.
    • Stull, R. B. 1988. An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, Dayrdrecht, 666 pp.
    • Tjernstro¨m, M. 1993. Turbulence length scales in stably stratified free shear flow analyzed from slant aircraft profiles. J. Appl. Meteorol. 32, 948-963.
    • Van den Broeke, M. R. 1997. Momentum, heat and moisture budgets of the katabatic wind layer over a mid-latitude glacier in summer. J. Appl. Meteorol. 36, 763-774.
    • Van der Avoird, E. and Duynkerke, P. G. 1999. Turbulence in a katabatic flow. Does it resemble turbulence in stable boundary layers over flat surfaces? Boundary-Layer Meteorol. 92, 39-66.
    • Zilitinkevich, S. and Calanca, P. 2000. An extended theory for the stably stratified atmospheric boundary layer. Quart. J. R. Meteorol. Soc. 126, 1913-1923.
    • Zilitinkevich, S. and Mironov, D. V. 1996. A multi-limit formulation for the equilibrium depth of a stably stratified boundary layer. Boundary-Layer Meteorol. 81, 325-351.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from