OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Shvidenko, A.; Nilsson, S. (2003)
Publisher: International Meteorological Institute in Stockholm
Journal: Tellus B
Languages: English
Types: Article
An attempt is made to synthesize the current understanding of the impact of Russian forests on the global carbon (C) budget for the period 1961–1998 (37 years), based on a detailed inventory of pools and fluxes in 1988–1992, and a historical reconstruction of a full forest carbon budget for 1961–1998. All major intermediate indicators of the budget (phytomass, net primary production, impact of disturbances, soil respiration, etc.) were independently estimated and compared with earlier reported results. During the entire period, the C pools of Russian forest land (FL, 882.0 × 106 ha in 1998) increased by 433 Tg C yr−1, of which 153 Tg C yr−1 are accumulated in live biomass, 57 Tg C yr−1 in above- and below-ground dead wood, and 223 Tg C yr−1 are sequestered in soil. A significant part of this increase deals with land-cover changes. The annual average C uptake by the FL from the atmosphere, defined by a flux-based method, is estimated to be −322 Tg C yr−1 for 1961–1998. The lateral transport to the lithosphere and hydrosphere comprised 47 Tg C yr−1 (including charcoal), which is considered part of the “missing C sink.” The uncertainties (excluding unrecognized biases) of averages for the entire period are estimated to be in the range of ±5–8% and ±24% for major fluxes out/into the atmosphere and for net ecosystem exchange, respectively (a priori confidential probability of 0.9). If the impact of land-cover change is excluded, the average annual sink in 1961–1998, estimated by both pool- and flux-based methods, was 268 ± 94 and 272 ± 68 Tg C yr−1, respectively. The reported results are in line with recent estimates for Northern Eurasia made by inverse modeling at the continental scale, if land classes other than forests contribute to the total sink of terrestrial vegetation.DOI: 10.1034/j.1600-0889.2003.00046.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Aber, J. D., Melillo, J. M. and McClugherty, C. A. 1990. Predicting long-term patterns of mass loss, nitrogen dynamics, and soil organic matter formation from initial fine chemistry in temperate forest ecosystems. Can. J. Bot. 68, 2201-2208.
    • Alexeyev, V. A. and Birdsey, R. A. (eds.) 1994. Carbon in ecosystems of forests and wetlands of Russia. Sukachev Institute of Forest Research, Krasnoyarsk, Russia, 170+54 pp. (in Russian).
    • Andren, O. and Katterer, T. 1997. ICBM: the introductory carbon balance model for exploration of soil carbon balances. Ecol. Appl. 7, 1226-1236.
    • Bazilevich, N. I. 1993. Biological productivity of ecosystems of Northern Eurasia. Nauka, Moscow (in Russian).
    • Casperson, J. P., Pacala, S. W., Jenkins, J. C., Hurt, C. C., Moorcroft, P. R. and Birdsey, R. A. 2000. Contribution of land-use history to carbon accumulation in U.S. forests. Science 290, 1148-1151.
    • Chagina, E. G. 1970. Carbon balance under litter's decomposition in Cedar forests of West Sajan Mountains. In: Problems of forestry, Vol. 1 (ed. A. B. Shukov), Institute of Forest and Timber, Krasnoyarsk, 246-252 (in Russian).
    • Chestnikh, O. V., Zamolodchikov, D. G., Utkin, A. I. and Korovin, G. N. 1999. Distribution of stocks of organic carbon in soils of Russian forests. For. Sci (Lesovedenie) 2, 13-21 (in Russian).
    • Cramer, W., Bondeau, A., Woodward, F. I., Prentice, I. K., Betts, R. A., Brovkin, V., Cox, P. M., Fisher, V., Foley, J. A., Friend, A. D., Kucharik, C., Lomas, M. R., Ramankutty, N., Sitch, S., Smith, D., White, A. and Joung-Molling, C. 2001. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biol. 7, 357-373.
    • Davidson, E. A. and Hirsch, A. I. 2001. Fertile forest experiments. Nature 411, 431-433.
    • de Wit, H. A. and Kvinsland, S. 1999. Carbon stock in Norwegian forest soils and effects of forest management on carbon storage. Rapport fra skogforskingen-Supplement 14, The Norwegian Forest Research Institute (NISK), Oslo, Norway.
    • Dixon, R. K. and Krankina, O. N. 1993. Forest fire in Russia: carbon dioxide emission to the atmosphere. Can. J. For. Res. 23, 700-705.
    • Dixon, R., Brown, S., Houghton, R., Solomon, A., Trexler, M. and Wisnievski, J. 1993. Global forest ecosystems: their carbon pools and fluxes. Science. 263, 185-190.
    • Djakonova, K. V. 1972. Organic and mineral matters in lysimetric solutions of different soils and their role in current processes of soil formation. In: Organic matter of natural and cultivated soils, Nauka, Moscow 183-223, (in Russian).
    • Evdokimenko, M. D. 1989. Role of pyrogenic factor in productivity of stands. In: Factors of forest productivity (ed. I. N. Elagin), Nauka, Novosibirsk, 53-90.
    • Filippov, A. V. 1968. Some pyrological properties of forest combustibles. In: Burning and extinguishing, All-Union Research Fire Protection Society, Moscow, 351-358 (in Russian).
    • FAO 2000. Land cover classification system. Classification concept and user manual. United Nations Food and Agricultural Organization (FAO), Rome, Italy.
    • FSFMR 1995. Forest fund of Russia (state by 1 January 1993). Federal Service of Forest Management of Russia (FSFMR), Moscow (in Russian).
    • FSFMR 1999. Forest fund of Russia (state by 1 January 1998). Federal Service of Forest Management of Russia (FSFMR), Moscow (in Russian).
    • Glazovskiy, N. F. 1983. Principles of regionalization of territories by conditions of natural regional migration of matter. In: Landscape-geochemical regionalization and environmental protection (ed. M. A. Glazovskaya), Vol. 120, Mysl, Moscow, 19-28 (in Russian).
    • Glazovskaya, M. A. 1996. Role and functions of the pedosphere in geochemical carbon cycle. Soils Sci. (Pochvovedenie) 2, 174-186 (in Russian).
    • Goldweijk, K. K., van Minenen, J. G., Kreileman, G. J. J., Bloebeld, M. and Leemans, R. 1994. Simulating the carbon flux between the terrestrial environment and the atmosphere. Water, Air and Soil Pollut. 76, 99-230.
    • Goscomles SSSR 1990, 1991. Forest fund of the USSR (state by 1 January 1988), Vol. 1, Vol. 2. The USSR State Committee on Forest, Moscow (in Russian).
    • Gosleshoz SSSR 1968. Forest fund of the USSR, (state by 1 January 1966); 1976 (state by 1 January 1973), Vol. 1, Vol. 2, Vol. 3; 1982 (state by 1 January 1978) Vol. 1, Vol. 2; 1986 (state by 1 January 1983) Vol. 1, Vol. 2. The USSR State Committee of Forest Management, Moscow, (in Russian).
    • Gower, S. T., Isebrands, J. G. and Sheriff, D. W. 1995. Carbon allocation and accumulation in coniferous. In: Resource physiology of coniferous: acquisition, allocation and utilization, (eds. W. K. Smith and T. M. Hinckley), Academic Press, New York, 217-254.
    • Gower, S. T., Krankina, O., Olson, R. J., Apps, M., Linder, S. and Wang, C. 2000. Net primary production and carbon allocation patterns of boreal forest ecosystems. Ecol. Appl., 11, 1395-1411.
    • Grishina, L. A. 1986. Generation of humus and humus state of soils. Moscow State University, Moscow (in Russian).
    • Gurney, K. R., Low, R. M., Denning, A. S., Rayner, P. J., Baker, D., Bousquet, P., Bruhwiler, L., Chen, Y.-H., Ciais, P., Fan, S., Fung, I. Y., Gloor, M., Heiman, M., Higuchi, K., John, J., Maki, T., Maksyutov, S., Masarie, K., Peylin, P., Prather, M., Pak, B. C., Randerson, J., Sarmentino, J., Taguchi, S., Takahashi, T. and Yuen, C.-W. 2002. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature 415, 626- 630.
    • Hollinger, D. Y., Kelliher, E. M., Schulze, E.-D., Bauer, G., Arneth, A., Byers, J. N., Hunt, J. E., McSeveny, T. M., Kobak, K. I., Milukova, I., Sogatchev, A., Tatarinov, F., Varlagin, A., Ziegler, W. and Vygodskaya, N. N. 1998. Forest-atmosphere carbon dioxide exchange in Eastern Siberia. Agric. For. Meteorol. 90, 291-306.
    • Isachenko, T. I., Karamysheva, Z. V., Ladygina, G. M. and Safronova, I. N. 1990. Map of vegetation of the USSR. Scale 1:4 M. Institute of Geography, Moscow.
    • Isaev, A. S. and Korovin, G. N. 1998. Carbon in forests of Northern Eurasia. In: Carbon turnover in territories of Russia (ed. G. Zavarzin), Russian Academy of Sciences, Moscow, 63-95 (in Russian).
    • Isaev, A. S., Korovin, G. N., Utkin, A. I., Pryashnikov, A. A. and Zamolodchikov, D. G. 1993. Estimation of carbon pool and its deposition in phytomass of forest ecosystems in Russia. For. Sci. (Lesovedenie) 5, 3-10 (in Russian).
    • Isaev, A., Korovin, G., Zamolodchikov, D., Utkin, A. and Pryashnikov, A. 1995. Carbon stock and deposition in phytomass of the Russian forests. Water, Air and Soil Pollut. 82, 247-256.
    • Joos, F., Prentice, I. C., Sitch, S., Meyer, R., Hooss, G., Plattner, G.-K., Gerber, S. and Hasselman, K. 2001. Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios. Global Biogeochem. Cycles 51, 891- 907.
    • Kajii, Y., Kato, S., Streets, D. G., Tsai, N. Y., Shvidenko, A., Nilsson, S., McCallum, I., Minko, N. P., Abushenko, N., D. and Khodzer, T. V. 2002. Boreal forest fire in Siberia in 1998: estimation of area burned and emissions of pollutants by AHVRR satellite data. J. Geophys. Res. (in press).
    • Karelin, D. V., Zamolodchikov, D. G. and Gilmanov, T. G. 1995. For. Sci. (Lesovedenie) 5, 29-36 (in Russian).
    • Kassens, H., Bauch, H. A., Dmitrenko, I. A., Eichen, H., Hubberten, H.-W., Melles, M., Thiede, J. and Timokhov, L. A. (eds.) 1999. Land-ocean systems in the Siberian arctic. Dynamics and history. Springer-Verlag, Berlin, Heidelberg.
    • Knohl, A., Kolle, O., Minaeva, T. Y., Milykova, I. M., Vygodskaja, N. N., Foken, T. and Schulze, E.-D. 2002. Carbon dioxide exchange of a Russian boreal forest after disturbance by wind throw. Global Change Biol. 8, 231- 246.
    • Kobak, K. I. 1988. Biotic components of carbon cycle. Hydrometeoizdat, Leningrad (in Russian).
    • Kokorin, A. O. and Nazarov, I. M. 1994. Evaluation of the effect of climate warming and photosynthetically-active radiation on boreal forests. Meteorol. Hydrol. 5, 44-54 (in Russian).
    • Kokorin, A. O., Lelyakin, A. L., Nazarov, I. M. and Filippchuk, A. N. 1996. Calculation of CO2 net sinks/emissions in Russian forests and assessment of mitigation options. Env. Mgt. 20 (Suppl. 1), 101-110.
    • Kolchugina, T. P. and Vinson, T. S. 1993a. Comparison of two methods to assess the carbon budget of forest biomes in the former Soviet Union. Water, Air and Soil Pollut. 70, 207-221.
    • Kolchugina, T. P. and Vinson, T. S. 1993b. Equilibrium analysis of carbon pools and fluxes of forest biomes in the former Soviet Union. Can. J. For. Res. 23, 81-88.
    • Kolchugina, T. P. and Vinson, T. S. 1995. Role of Russian forests in the global carbon balance. Ambio 24, 258-264.
    • Krankina, O. N. and Dixon, R. K. 1994. Forest management options to conserve and sequester terrestrial carbon in the Russian Federation. World Resource Rev. 6, 88-101.
    • Krankina, O. N., Harmon, M. E. and Winjum, J. K. 1996. Carbon storage and sequestration in the Russian forest sector. Ambio 25, 284-288.
    • Krankina, O. N., Kukuev, Y. A., Treyfeld, R. F., Harmon, M. E., Kashpot, N. N., Kresnov, V. G., Skudin, V. M., Protasov, N. A., Yatskov, M. A., Spycher, G. and Povarov, E. D. 2000. Coarse woody debris in forest regions of Russia: estimation methods and role in forest management for carbon sequestration. In: The role of boreal forests and forestry in the global carbon budget, International Science Conference, 8-12 May, Edmonton, Alberta.
    • Kurganova, I. 2002. Carbon dioxide emission from soils of Russian terrestrial ecosystems. Interim Report IR-02-070. International Institute for Applied Systems Analysis, Laxenburg, Austria (in press).
    • Kurz, W. A., Apps, M. J., Webb, T. M. and MacNamee, P. J. 1992. The carbon budget of the Canadian forest sector: phase 1. Inf. Rep. NOR-X-326, Forestry Canada, Northwest Region, Northern Forestry Center, Edmonton, Alberta, Canada.
    • Labutina, I. A. and Lychagin, M. Yu. (eds.) 1999. Geoecology of Prikaspiy. 3. GIS of Astrakhan natural reserve. Geochemistry of landscapes of delta of Volga river. Moscow State University, Moscow (in Russian).
    • Lelyakin, A. L., Kokorin, A. O. and Nazarov, I. M. 1997. Vulnerability of Russian forests to climate change. Model estimation of CO2 fluxes. Clim. Change 36, 123- 133.
    • Liski, J. and Westman, C. J. 1995. Density of organic carbon in soils at coniferous forest sites in southern Finland. Biogeochemistry. 29, 183-197.
    • Lychagin, M. Yu. 1983. The chemical composition of atmospheric precipitation on the territory of the USSR. In: Landscape-geochemical regionalization and environmental protection (ed. M. A. Glazovskaya), Volume 120, Mysl, Moscow, 183-187 (in Russian).
    • Maksyutov, S., Machida, T., Nakazava, T., Inoue, G., Mukai, H., Patra, P. K. and Transcom-3 modelers. 2001. Asian CO2 fluxes estimated using recent observations and transport model inversions. In: Sixth International Carbon Dioxide Conference, 1-5 October 2001, Sendai, Japan, Volume II, 723-726.
    • McGuire, A. D., Sitch, S., Dargaville, R., Esser, G., Foley, J., Heimann, M., Joos, F., Kaplan, J., Kicklighter, D. W., Meier, R. A., Melillo, J. M., Moore III, B., Prentice, I. C., Ramankutty, N., Reichenau, T., Schloss, A., Tian, H. and Wittenberg, U. 2001. The effects of CO2, climate and landuse on terrestrial carbon balance, 1920-1992: An analysis with four process-based ecosystem models. Global Biogeochem. Cycles 15, 183-206.
    • Melillo, J. M., Furry, J. R., Houghton, R. A., Moor III, B. and Scole, D. L. 1988. Land-use change in the Soviet Union between 1850-1980: cases of a net release of CO2 to the atmosphere. Tellus 40B, 116-128.
    • Melillo, J. M., Aber, J. D., Linkins, A. E., Ricca, A., Fry, B. and Nadelhoffer, K. J. 1989. Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter. Plant and Soil 115, 189-198.
    • Meyback, M. 1982. Carbon, nitrogen, and phosphorus transport by world rivers. Am. J. Sci. 283, 401-450.
    • Myneni, R. B., Dong, J., Tucker, C. J., Jaufman, R. K., Kauppi, P. E., Liski, J., Zhou, L., Alexeyev, V. and Hughes, M. K. 2001. A large carbon sink in the woody biomass of Northern forests. Proc. Nat. Acad. Sci. USA, 98, 14784- 14789.
    • Nilsson, S., Blauberg, K., Samarskaja, E. and Kharuk, V. 1998. Pollution stress of Siberian forests. In: Air pollution in the Ural mountains (eds. I. Linkov and R. Wilson), Kluwer Academic Publishers, Dordrecht, 31-54.
    • Nilsson, S., Shvidenko, A., Stolbovoi, V., Gluck, M., Jonas, M. and Obersteiner, M. 2000. Full carbon account for Russia. Interim Report IR-00-021, International Institute for Applied Systems Analysis, Laxenburg, Austria.
    • Obersteiner, M. 1999. Carbon budget of the forest industry of the Russian Federation 1928-2012. Interim Report IR-99- 033, International Institute for Applied Systems Analysis, Laxenburg, Austria.
    • Olson, J. S. 1963. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44, 322- 331.
    • Orlov, D. S. 1990. Humus acids in soils and general theory of humification. Moscow State University, Moscow (in Russian).
    • Peylin, P., Baker, D., Sarmiento, J., Ciais, P. and Bousquet, P. 2002. Influence of transport uncertainty on annual mean versus seasonal inversion of atmospheric CO2 data. J. Geophys. Res.-Atmos. (in press).
    • Ponomareva, V. V. and Plotnikova, N. S. 1972. Regularities of migration and accumulation of elements in podzolic soils (lysimetric measurements). In: Biogeochemic processes in podzolic soils, Nauka, Leningrad, 6-65 (in Russian).
    • Rapalee, G., Trumbore, S. E., Davidson, E. A., Harden, J. W. and Veldhuis, H. 1998. Soil carbon stocks and their rates of accumulation and loss in a boreal forest landscape. Global Biogeochem. Cycles 12, 687-701.
    • Rojkov, V., Vagner, V., Nilsson, S. and Shvidenko, A. 1997. Carbon of Russian wetlands. In: Fifth International Carbon Dioxide Conference, Cairns, Queensland, Australia, 8-12 September 1997, 112-113.
    • Romankevich, E. A. and Vetrov, A. A. 2001. Carbon cycle in Arctic seas of Russia. Nauka, Moscow (in Russian).
    • Running, S. W., Baldocchi, D. D., Turner, D. P., Gower, S. T., Bakwin, P. S. and Hibbard, K. A. 1999. A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data. Remote Sensing Environ. 70, 108-127.
    • Sabo, E. D., Ivanov, Yu. N. and Shatillo, D. A. 1981. Reference book of hydroforestmelioration. Forest Industry, Moscow (in Russian).
    • Saet, Yu. E. and Smirnova, R. S. 1983. Geochemical principles of determing impact zones of industrial wastes in urban agglomerations. In: Landscape-geochemical regionalization and environmental protection (ed. M. A. Glazovskaya), Vol. 120, Mysl, Moscow, 45-55 (in Russian).
    • Schimmel, D. S., House, J. L., Hibbard, K. A., Bousquet, P., Ciais, P., Peylin, P., Braswell, B. H., Apps, M. J., Baker, D., Bondeau, A., Canadell, J., Churkina, G., Cramer, W., Denning, A. S., Field, C. B., Friedlingstein, P., Goodale, C., Heimann, M., Houghton, R. A., Melillo, J. M., Moore III, B., Mudiyarso, D., Noble, I., Pascala, S. W., Prentice, I. C., Raupach, M. R., Rayner, P. J., Scholes, R. J., Steffen, W. L. and Wirth, C. 2001. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414, 169-172.
    • Schlesinger, W. H. 1995. Soil respiration and changes in soil carbon stocks. In: Biotic feedback in the global climatic system: will the warming feed the warming (eds. G. S. Woodwell and F. T. Mackenzie), Oxford University Press, New York, 59-168.
    • Scholes, R. J. and Noble, I. R. 2001. Storing carbon on land. Science 294, 1012-1013.
    • Schulze, E.-D. and Heimann, M. 1998. Carbon and water exchange of terrestrial systems. In: Asian change in the context of global change (eds. J. N. Galloway and J. Melillo), Cambridge University Press, Cambridge, 145-161.
    • Schulze, E.-D.,Lloyd, J., Kelliher, F. M., Wirth, C., Rebman, C., Luehker, B., Mund, M., Knohl, A., Milyukova, I. M., Schulze, W., Ziegler, S. W., Varlagin, A. B., Sogachev, A. F., Valentini, R., Dore, S., Grigoriev, S., Kolle, O., Panferov, M. I., Tchebakova, N. and Vygodskaya, N. N. 1999. Productivity of forests in the Eurosiberian boreal region and their potential to act as a carbon sink - a synthesis. Global Change Biol. 5, 703-722.
    • Sedjo, R. A. 1992. Temperate forest ecosystems in the global carbon cycle. Ambio 21, 274-277.
    • Sedykh, V. N. 1997. Forests of West Siberia and oil and gas complex. Ecology, Moscow (in Russian).
    • Shorokhova, E. V. 2000. Dynamics of carbon in indigenous spruce forests of middle taiga. Saint Petersburg State Forest Technical Academy, Saint Petersburg (in Russian).
    • Shvidenko, A. 1997. Biospheric role of the Russian forests. In: Dialogue on sustainable development of the Russian forest sector, Vol. 1 (ed. S. Nilsson), Interim Report IR-97- 009, International Institute for Applied Systems Analysis, Laxenburg, Austria, 22-44.
    • Shvidenko, A. and Nilsson, S. 2000. Fire and carbon budget of Russian forests. In: Fire, climate change, and carbon cycling in the Boreal forest (eds. E. S. Kasischke and B. J. Stocks), Ecological Studies 138, Springer, New York, 289-311.
    • Shvidenko, A. and Nilsson, S. 2002. Dynamics of Russian forests and the carbon budget in 1961-1998: an assessment based on long-term forest inventory data. Climatic Change 50, 5-37.
    • Shvidenko, A., Venevsky, S., Raile, G. and Nilsson, S. 1995a. A system for evaluation of growth and mortality in Russian forests. Water, Air and Soil Pollut. 82, 333-350.
    • Shvidenko, A., Nilsson, S., and Roshkov, V. 1995b. Possibilities for increased carbon sequestration through improved protection of Russian forests. Working Paper WP-95-86, International Institute for Applied Systems Analysis, Laxenburg, Austria.
    • Shvidenko, A., Nilsson, S., Roshkov, V. and Strakhov, V. V. 1996. Carbon budget of the Russian boreal forests: a system analysis approach to uncertainty. In: Forest ecosystems, forest management and the global carbon cycle (eds. M. Apps and D.T. Price), Springer Verlag, Berlin, 145- 162.
    • Shvidenko, A., Venevsky, S. and Nilsson, S. 1997. Generalized estimation of increment and mortality in Russian forests. In: Sustainable development of boreal forests, Proceedings of the 7th Annual Conference of the International Boreal Forest Research Association (IBFRA), Moscow, Russia, 184-191.
    • Shvidenko, A., Nilsson, S., Stolbovoi, V., Rozhkov, V. and Gluck, M. 2000. Aggregated estimation of the basic parameters of biological productivity and the carbon budget of Russian terrestrial ecosystems: 1. Stock of plant organic mass. Russ. J. Ecol. 6, 371-378.
    • Shvidenko, A., Shepashenko, D. and Nilsson, S. 2001a. Aggregated models of phytomass for major forest forming species of Russia. Forest Inventory and Forest Management 1, 7-16 (in Russian).
    • Shvidenko, A. Z., Nilsson, S., Stolbovoi, V. S., Rozhkov, V. A. and Gluck, M. 2001b. Aggregated estimation of basic parameters of biological production and the carbon budget of Russian terrestrial ecosystems: 2. Net primary production. Russ. J. Ecol. 32, 71-77.
    • Smith, S. V., Renwick, W. H., Buddemeir, R. W., and Crossland, C. J. 2001. Budget of soil erosion and deposition for sediments and sedimentary organic carbon across the conterminous United States. Global Biogeochem. Cycles. 15, 697-707.
    • SNKh SSSR 1962. Forest fund of the USSR (state by 1 January 1961). Council of National Economy of the USSR, Moscow (in Russian).
    • Steffen, W., Noble, I., Canadell, J., Apps, M., Schulze, D., Jarvis, P., Baldocchi, D., Ciais, P., Cramer, W., Ehleringer, J., Farquhar, C., Field, C., Ghazi, A., Gifford, R., Heimann, M., Houghton, R., Kabat, P., Koerner, C., Lambin, E., Linder, S., Lloyd, J., Mooney, H., Murdiyarso, D., Post, W., Prentice, K., Raupach, M., Schimel, D., Shvidenko, A. and Valentini, R. 1998. The terrestrial carbon cycle: implication for the Kyoto Protocol. Science 280, 1393- 1394.
    • Stolbovoi, V. 2002a. Carbon in Russian soils. Climatic Change 56, 131-156.
    • Stolbovoi, V. 2002b. Soil respiration in the full carbon account for Russia. Tellus (in press).
    • Syrjanen, K., Kuuluvainen, T. and Kalliola, R. 1999. Logs of a prestine picea abies forest: amount, decay stage distribution and spatial pattern. In: Nordic Symposium on the Ecology of Coarse Woody Debris in Boreal Forests, 31 May-3 June, Umea˚ University, Umea˚, Sweden, 43-44.
    • Tarasov, M. E., Alexeyev, V. A. and Rjabinin, B. N. 2000. Estimation of stock and dynamics of detritus in forests of Leningrad region. Reports of the Saint Petersburg Forestry Research Institute, Saint Petersburg, Vol. 1(2), 46-61 (in Russian).
    • Tarnocai, D. 1998. The amount of organic carbon in various soil orders and ecological provinces in Canada. In: Soil processes and the carbon cycle (eds. R. Lal, J. Kimble, R. Follet and B. Stewart), CRS Press, Boca Raton, 81-93.
    • Telizin, G. P. 1973. Elementary composition of forest combustibles in the Far East. In: Utilization and regeneration of forest resources in the Far East. Reports of Far Eastern Research Forestry Institute, Moscow, 15, 351-358 (in Russian).
    • Turner, D. P., Winjum, J. K., Kolchugina, T. P., Vinson, T. S., Schroeder, P. E., Phillips, D. L. and Cairns, M. A. 1998. Estimating the terrestrial carbon pools of the former Soviet Union, conterminous U.S., and Brazil. Clim. Res. 9, 183- 196.
    • UN 2000. Forest resources of Europe, CIS, North America, Australia, Japan and New Zealand. Main Report ECE/TIM/SP/17. Geneva Timber and Forest Study Papers, United Nations (UN), New York and Geneva.
    • Vedrova, E. F. 1995. Carbon pools and fluxes of 25-year old coniferous and deciduous stands in Middle Siberia. Water, Air and Soil Pollut. 82, 230-246.
    • Vinogradov, M. E., Romankevich, E. A., Vetrov, A. A. and Vedernikov, V. I. 1998. Carbon cycle in arctic seas of Russia. In: Carbon turnover in territories of Russia (ed. G. Zavarzin), Nauka, Moscow, 300-325 (in Russian).
    • Vonsky, S. N. 1957. Intensity of onground forest fire and its practical impacts. Leningrad Forestry Institute, Leningrad (in Russian).
    • Zimov, S. A., Davidov, S. P. and Zimova G. M. 1999. Contribution of disturbance to increasing seasonal amplitude of atmospheric CO2. Science 284, 1973- 1976.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok