LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Sørensen Geernaert, Lise Lotte; Geernaert, Gerald L.; Granby, Kit; Asam, Willem A. H. (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects:
Fluxes of HNO3 and NH3 to the sea-surface have been obtained from measurements of vertical concentration profiles. The obtained fluxes have been compared to fluxes calculated by the use of the resistance method, and the fluxes calculated from measurements based on the extrapolation of a log-linear profile were found to be an order of a magnitude higher than the fluxes obtained from the resistance method. The difference between these two calculated fluxes is explained by scavenging of the gases by sea-spray and chemical reactions. A simple model is constructed to calculate the vertical profiles for HNO3 in the case of high chemical reactions. The high fluxes and the measured profiles are explained by the calculated profiles of HNO3 where chemical reactions are taken into account. Since both sink/sources and horizontal inhomogeneity are influencing the NH3 flux, it has not been possible to calculate profiles for this component by taking chemical reactions into account.DOI: 10.1034/j.1600-0889.1998.t01-1-00001.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Asman, W. A. H., Harrison, R. M. and Ottley, C. J. 1994a. Estimation of the net air-sea flux of ammonia over the southern bight of the north sea. Atmospheric Environment 28, 3647-3654.
    • Asman, W. A. H., Sørensen, L. L, Berkowicz, R., Granby, K., Nielsen, H., Jensen, B., Runge, E. and Lykkelund, C. 1994b. Dry deposition processes. Report No. 35, Marine Research from the Danish Environmental Protection Agency series, Copenhagen, Denmark (In Danish).
    • Asman, W. A. H, Hertel, O., Berkowicz, R., Christensen, J.,Runge, E. H., Sørensen, L. L., Granby, K., Nielsen, H., Jensen, B., Gryning, S. E., Sempreviva, A. M., Larsen, S., Hummelshøj, P., Jensen, N. O., Allerup, P., Jørgensen, J., Madsen, H., Overgaard, S. and Vejen, F. 1995. Atmospheric nitrogen input to the Kattegat. Ophelia 42, 5-28.
    • Andreas, E. L. 1989. Thermal and size evolution of sea spray droplets. CRREL Report 89-11. American Society for Testing and Materials, Philadelphia, Pa., USA.
    • Batchvarova, E. and Gryning, S.-E. 1994. Applied model of the height of the daytime mixed layer including the capping entrainment zone. Air pollution modeling and its application (X), ed. S.-E. Gryning and M. M. Milla´n. Plenum Press, New York, 253-261.
    • Brost, R. A., Delany, A. C. and Huebert, B. J. 1988. Numerical modeling of concentrations and fluxes of HNO3, NH3, and NH4NO near the surface. J. Geophys Res. 93, 7137-7152.
    • Businger, J. A. and Delaney, A. C. 1990. Chemical sensor resolution required for measuring surface fluxes by three common micrometeorological techniques. J. Atmos. Chem. 10, 399-410.
    • Businger, J. A. 1986. Evaluation of the accuracy with which dry deposition can be measured with current micrometeorological techniques. J. Clim. Appl. Meteorol. 25, 1100-1124.
    • Duyzer, J. H. 1992. The influence of chemical reactions on surface exchange of NO, NO2 and O3. Precipitation scavenging and atmospheric surface exchange, ed. S. Schwartz and W. Slinn. Hermis. Publ. Corp., 1105-1114.
    • Fairall, C. W., Davidson, K. L. and Schacher, G. E. 1983. An analysis of the surface production of sea-salt aerosols. T ellus 35B, 31-39.
    • Fenter, F. F, Caloz, F. and Rossi, M. J. 1994. Kinetics of the nitric-acid uptake by salt. J. Phys. Chem. 98, 9801.
    • Finlayson-Pits, B. J. and Pits, J. N. Jr. 1986. Atmospheric chemistry. John Wiley & Sons, New York, USA.
    • Fitzjarrald, D. R. and Lenschow, D. H. 1983. Mean concentration and flux profiles for chemically reactive species in the atmospheric surface layer. Atmos. Environ. 17, 2505-2512.
    • Genfa, Z., Dasgupta, P. K. and Dong, S. 1989. Measurements of atmospheric ammonia. Environ. Sci. and T echn. 23, 1467-1474.
    • Gryning, S.-E. 1993. W ind, turbulence and boundary layer height over the Kattegat sea. Report No. 21, Marine Research from the Danish Environmental Protection Agency series, Copenhagen, Denmark (In Danish).
    • Harrison, R. M. and Pio, C. A. 1983. Size diVerentiated composition of inorganic atmospheric aerosols of both marine and polluted continental origin. Atmos. Environ. 17, 1733-1738.
    • JoVre, S. M. 1988. Modelling the dry deposition velocity of highly soluble gases to the sea surface. Atmos. Environ. 22, 1137-1147.
    • Kramm, G. and Dlugi, R. 1994. Modelling of the vertical fluxes of nitric acid, ammonia and ammonium nitrate. J. Atmos. Chem. 18, 319-357.
    • Kramm, G., M u¨ller, H., Fowler, D., H o¨fken, K. D., Meixner, F. X. and Schaller, E. 1991. A modified profile method for determining the vertical fluxes of NO, NO2 Ozone and HNO3 in the atmospheric surface layer. J. Atmos. Chem. 13, 265-288.
    • Kramm, G. 1989. A numerical method for determining the dry deposition of atmospheric trace gases. Boundary-L ayer Meteoro. 48, 157-175.
    • Lenschow, H. D. 1982. Reactive trace species in the boundary layer from a micrometeorological perspective. J. Meteorol. Soc. Japan 60, 472-480.
    • Lenschow, H. D. and Delany, A. C. 1987. An analytical formulation for NO and NO2 flux profiles in the atmospheric surface layer. J. Atmos. Chem. 5, 301-309.
    • Lenschow, D. H. and Hicks, B. B. 1989, Global tropospheric chemistry: chemical fluxes in the global atmosphere. Report of the workshop on measurements of surface exchange and flux divergence of chemical species in the global atmosphere. NCAR, Boulder, Colorado, USA.
    • Luther, C. J. and Peters, L. K. 1982. The possible role of heterogeneous aerosol processes in the chemistry of CH4 and CO in the troposhere. Heterogeneous atmospheric chemistry, ed D. R. Schryer. American Geophysical Union, Washinton DC, 264-273.
    • Mamane, Y. and Gottlieb, J. 1992. Nitrate formation on sea-salt and mineral particles- a single particle approach. Atmos. Environ. 26A, 1763-1769.
    • Martens, C. S., Wesolowski, J. J., Harriss, R. C. and Kaifer, R. 1973. Chlorine loss from Puerto Rican and San Fransisco bay area marin aerosols. J. Geophys. Res. 78, 8778-8791.
    • Monahan, E. C., Fairall, C. W., Davidson, K. L. and Boyle, P. J. 1983. Observed inter-relations between 10 m winds, ocean whitecaps and marine aerosols. Quart. J. R. Met. Soc. 109, 379-392.
    • M u¨ller, H., Kramm, G., Meixner, F., Dollard, G. J., Fowler, D. and Possanzini, M. 1993. Determination of HNO3 dry deposition by modified Bowen ratio and aerodynamic profile techniques. T ellus 45B, 346-367.
    • Paerl, H. W. 1985. Enhancement of marine primary production by nitrogen-enriched acid rain. Nature 316, 747-749.
    • Paerl, H. W., Rudek, J. and Mallin, M. A. 1990. Stimulation of phytoplankton production in coastal waters by natural rainfall inputs: nutritional and trophic implications. Marine Biology 107, 247-254.
    • Pakkanen, T. A., Kerminen, V.-M., Hillamo, R. E., Ma¨kinen, M., Ma¨kela¨, T. and Virkkula, A. 1996. Distribution of nitrate over sea-salt and soil derived particlesimplications from a field study. J. Atmos. Chem. 24, 189-205.
    • Perrino, C., De Santis, F. and Febo, A. 1990. Criteria for the choice of a denuder sampling technique devoted to the measurements of atmospheric nitrous and nitric acids. Atmos. Environ. 24A, 617-626.
    • Pruppacher, H. P. and Klett, J. D. 1997. Microphysics of clouds and precipitation. Kluwer Academic Publishers, The Netherlands.
    • Quinn, P. K., Charlson, R. J. and Bates, T. S. 1988. Simultaneous observations of ammonia in the atmosphere and ocean. Nature 335, 336-338.
    • Seinfeld, J. H. 1986. Atmospheric chemistry and physics of air pollution, 738 pp. John Wiley, New York.
    • Sørensen, L. L., Granby, K., Nielsen, H. and A˚sman, W. A. H. 1994a. DiVusion scrubber technique used for measurements of atmospheric ammonia. Atmospheric Environment 28, 3645-3645.
    • Sørensen, L. L., Granby, K., Nielsen, H. and A˚sman, W. A. H. 1994b. DiVusion scrubber. A technique for measuring ammonia. Technical report no. 99. National Environmental Research Institute, Roskilde, Denmark.
    • Sørensen, L. L., Hertel, O., Pedersen, B., Wagner, M., Larsen, S. E., Højstrup, J., Schulz, M., de Leeuw, G. and Geernaert, G. L. 1994c. Horizontal transport modelling and exchange of atmospheric nitrogen gases with the coastal ocean. Proc. 2nd Air-Sea Inter & Met & Ocean coast zone. American Meteorol. Soc., 208-209.
    • Vila´-Guerau de Arellano, J., Duynkerke, P. G. and Zeller, K. F. 1995. Atmospheric surface layer similarity theory applied to chemically reactive species. J. Geophys. Res. D1, 1397-1408.
    • Wesely, M. L. and Hicks, B. B. 1977. Some factors that aVect the deposition of sulphur dioxide and similar gases on vegetation. JAPCA 27, 1110-1116.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from