LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Changqin Yin; Tijian Wang; Fabien Solmon; Marc Mallet; Fei Jiang; Shu Li; Bingliang Zhuang (2015)
Publisher: Taylor & Francis Group
Journal: Tellus: Series B
Languages: English
Types: Article
Subjects: Meteorology. Climatology, QC851-999, primary organic aerosol, optical; radiative index; primary organic aerosol; China, indirect, refractive indices, optical
Using the regional climate model (RegCM4), optical depth and shortwave (SW) direct radiative forcing (DRF) of secondary organic aerosol (SOA) are investigated over China during the summer period. The biogenic emission and gas phase chemistry modules are updated to investigate α-pinene and limonene emissions and their reactions with atmosphere oxidants. The VBS (volatility basis set) model is implemented into RegCM4 to illustrate gas-particle partition process. During the study period (July 2006), the mean surface concentration and column burden of anthropogenic SOA (ASOA) over China are 1.90 µg m−3 and 4.50 mg m−3, respectively. The ones of biogenic SOA (BSOA) are 2.00 and 3.35 mg m−3, respectively. Monthly mean calculated optical depths (at 550 nm) are 0.020 and 0.013 for ASOA and BSOA. The domain averaged simulated ASOA direct SW radiative forcing at surface and at the top of atmosphere (TOA) are −1.21 and −0.66 W m−2. For BSOA, the surface and TOA SW DRF are −0.75 and −0.46 W m−2. The errors induced by applying optical parameters of primary organic aerosol for SOA DRF modelling are also accessed. For DRF at TOA, it will increase by 156 and 161% for ASOA and BSOA. Though the optical parameters applied in this study are still rough, especially for intermediate SOA, this is a first step to apply explicit optical parameters for both ASOA and BSOA in DRF estimation.Keywords: optical, refractive indices, primary organic aerosol, indirect(Published: 5 May 2015)Citation: Tellus B 2015, 67, 24634, http://dx.doi.org/10.3402/tellusb.v67.24634
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Ahmadov, R., McKeen, S., Robinson, A., Bahreini, R., Middlebrook, A. and co-authors. 2012. A volatility basis set model for summertime secondary organic aerosols over the Eastern United States in 2006. J. Geophys. Res. Atmos. 117, D06301.
    • Aiken, A. C., Decarlo, P. F., Kroll, J. H., Worsnop, D. R., Huffman, J. A. and co-authors. 2008. O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with highresolution time-of-flight aerosol mass spectrometry. Environ. Sci. Technol. 42, 4478 4485.
    • Athanasopoulou, E., Vogel, H., Vogel, B., Tsimpidi, A., Pandis, S. and co-authors. 2013. Modeling the meteorological and chemical effects of secondary organic aerosols during an EUCAARI campaign. Atmos. Chem. Phys. 13, 625 645.
    • Barkey, B., Paulson, S. and Chung, A. 2007. Genetic algorithm inversion of dual polarization polar nephelometer data to determine aerosol refractive index. Aerosol. Sci. Tech. 41, 751 760.
    • Cappa, C., Che, D., Kessler, S., Kroll, J. and Wilson, K. 2011. Variations in organic aerosol optical and hygroscopic properties upon heterogeneous OH oxidation. J. Geophys. Res. Atmos. 116, D15204.
    • Chung, S. H. and Seinfeld, J. H. 2002. Global distribution and climate forcing of carbonaceous aerosols. J. Geophys. Res. Atmos. 107, AAC 14-1-AAC 14-33.
    • Crosier, J., Allan, J., Coe, H., Bower, K., Formenti, P. and co-authors. 2007. Chemical composition of summertime aerosol in the Po Valley (Italy), northern Adriatic and Black Sea. Q. J. Roy. Meteorol. Soc. 133, 61 75.
    • Donahue, N., Robinson, A., Stanier, C. and Pandis, S. 2006. Coupled partitioning, dilution, and chemical aging of semivolatile organics. Environ. Sci. Technol. 40, 2635 2643.
    • Ehn, M., Thornton, J. A., Kleist, E., Sipila, M., Junninen, H. and co-authors. 2014. A large source of low-volatility secondary organic aerosol. Nature. 506, 476 479.
    • Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J. F., Pfister, G. G. and co-authors. 2010. Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geosci. Model. Dev. 3, 43 67.
    • Fu, Y. and Liao, H. 2012. Simulation of the interannual variations of biogenic emissions of volatile organic compounds in China: impacts on tropospheric ozone and secondary organic aerosol. Atmos. Environ. 59, 170 185.
    • Giorgi, F., Bi, X. Q. and Qian, Y. 2003. Indirect vs. direct effects of anthropogenic sulfate on the climate of East Asia as simulated with a regional coupled climate-chemistry/aerosol model. Clim. Change. 58, 345 376.
    • Giorgi, F., Coppola, E., Solmon, F., Mariotti, L., Sylla, M. and co-authors. 2012. RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim. Res. 52, 7 29.
    • Giorgi, F. and Mearns, L. O. 1999. Introduction to special section: regional climate modeling revisited. J. Geophys. Res. Atmos. 104, 6335 6352.
    • Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D. and co-authors. 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437 471.
    • Kanakidou, M., Seinfeld, J., Pandis, S., Barnes, I., Dentener, F. and co-authors. 2005. Organic aerosol and global climate modelling: a review. Atmos. Chem. Phys. 5, 1053 1123.
    • Kiehl, J., Hack, J., Bonan, G., Boville, B., Williamson, D. and co-authors. 1998. The national center for atmospheric research community climate model: CCM3. J. Clim. 11, 1131 1149.
    • Kim, H., Barkey, B. and Paulson, S. 2010. Real refractive indices of alpha- and beta-pinene and toluene secondary organic aerosols generated from ozonolysis and photo-oxidation. J. Geophys. Res. Atmos. 115, D24212.
    • Kim, H., Barkey, B. and Paulson, S. 2012. Real refractive indices and formation yields of secondary organic aerosol generated from photooxidation of limonene and alpha-pinene: the effect of the HC/NOx ratio. J. Phys Chem. A. 116, 6059 6067.
    • Kim, H. and Paulson, S. 2013. Real refractive indices and volatility of secondary organic aerosol generated from photooxidation and ozonolysis of limonene, alpha-pinene and toluene. Atmos. Chem. Phys. 13, 7711 7723.
    • Kirkeva˚ g, A., Iversen, T., Seland, Ø. and Kristja´ nsson, J. E. 2005. Revised Schemes for Aerosol Optical Parameters and Cloud Condensation Nuclei in CCM-Oslo. Institute Report Series No. 128. Department of Geosciences, University of Oslo, Oslo, Norway, p. 29.
    • Klinger, L., Li, Q., Guenther, A., Greenberg, J., Baker, B. and co-authors. 2002. Assessment of volatile organic compound emissions from ecosystems of China. J. Geophys. Res. Atmos. 107, ACH 16-1-ACH 16-18.
    • Ko¨ pke, P., Hess, M., Schult, I. and Shettle, E. 1997. Global Aerosol Data Set. Max-Planck-Institut fu¨ r Meteorologie Hamburg, Germany.
    • Lamarque, J., Bond, T., Eyring, V., Granier, C., Heil, A. and co-authors. 2010. Historical (1850 2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos. Chem. Phys. 10, 7017 7039.
    • Lambe, A., Cappa, C., Massoli, P., Onasch, T., Forestieri, S. and co-authors. 2013. Relationship between oxidation level and optical properties of secondary organic aerosol. Environ. Sci. Technol. 47, 6349 6357.
    • Lane, T., Donahue, N. and Pandis, S. 2008. Simulating secondary organic aerosol formation using the volatility basis-set approach in a chemical transport model. Atmos. Environ. 42, 7439 7451.
    • Li, J. P. and Zeng, Q. C. 2002. A unified monsoon index. Geophys. Res. Lett. 29, 115-1-115-4.
    • Liao, H., Henze, D. K., Seinfeld, J. H., Wu, S. and Mickley, L. J. 2007. Biogenic secondary organic aerosol over the United States: comparison of climatological simulations with observations. J. Geophys. Res. Atmos. 112, D06201.
    • Lihavainen, H., Kerminen, V., Tunved, P., Aaltonen, V., Arola, A. and co-authors. 2009. Observational signature of the direct radiative effect by natural boreal forest aerosols and its relation to the corresponding first indirect effect. J. Geophys. Res. Atmos. 114, D20206.
    • Ma, L. and Thompson, J. 2012. Optical properties of dispersed aerosols in the near ultraviolet (355 nm): measurement approach and initial data. Anal. Chem. 84, 5611 5617.
    • Massoli, P., Lambe, A., Ahern, A., Williams, L., Ehn, M. and co-authors. 2010. Relationship between aerosol oxidation level and hygroscopic properties of laboratory generated secondary organic aerosol (SOA) particles. Geophys. Res. Lett. 37, L24801.
    • Ming, Y., Ramaswamy, V., Ginoux, P. and Horowitz, L. 2005. Direct radiative forcing of anthropogenic organic aerosol. J. Geophys. Res. Atmos. 110, D20208.
    • Morgan, W., Allan, J., Bower, K., Esselborn, M., Harris, B. and co-authors. 2010. Enhancement of the aerosol direct radiative effect by semi-volatile aerosol components: airborne measurements in North-Western Europe. Atmos. Chem. Phys. 10, 8151 8171.
    • Murphy, B. and Pandis, S. 2009. Simulating the formation of semivolatile primary and secondary organic aerosol in a regional chemical transport model. Environ. Sci. Tech. 43, 4722 4728.
    • Myhre, G., Bellouin, N., Berglen, T., Berntsen, T., Boucher, O. and co-authors. 2007. Comparison of the radiative properties and direct radiative effect of aerosols from a global aerosol model and remote sensing data over ocean. Tellus B. 59, 115 129.
    • Myhre, G., Berglen, T., Johnsrud, M., Hoyle, C., Berntsen, T. and co-authors. 2009. Modelled radiative forcing of the direct aerosol effect with multi-observation evaluation. Atmos. Chem. Phys. 9, 1365 1392.
    • Myhre, G., Samset, B., Schulz, M., Balkanski, Y., Bauer, S. and co-authors. 2013. Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmos. Chem. Phys. 13, 1853 1877.
    • Nair, V. S., Solmon, F., Giorgi, F., Mariotti, L., Babu, S. S. and co-authors. 2012. Simulation of south Asian aerosols for regional climate studies. J. Geophys. Res. Atmos. 117, D04209.
    • Nakayama, T., Matsumi, Y., Sato, K., Imamura, T., Yamazaki, A. and co-authors. 2010. Laboratory studies on optical properties of secondary organic aerosols generated during the photooxidation of toluene and the ozonolysis of alpha-pinene. J. Geophys. Res. Atmos. 115, D24204.
    • Nakayama, T., Sato, K., Matsumi, Y., Imamura, T., Yamazaki, A. and co-authors. 2012. Wavelength dependence of refractive index of secondary organic aerosols generated during the ozonolysis and photooxidation of alpha-pinene. SOLA. 8, 119 123.
    • Nakayama, T., Sato, K., Matsumi, Y., Imamura, T., Yamazaki, A. and co-authors. 2013. Wavelength and NOx dependent complex refractive index of SOAs generated from the photooxidation of toluene. Atmos. Chem. Phys. 13, 531 545.
    • Odum, J. R., Hoffmann, T., Bowman, F., Collins, D., Flagan, R. C. and co-authors. 1996. Gas/particle partitioning and secondary organic aerosol yields. Environ. Sci. Tech. 30, 2580 2585.
    • Qian, Y. and Giorgi, F. 2000. Regional climatic effects of anthropogenic aerosols? The case of Southwestern China. Geophys. Res. Lett. 27, 3521 3524.
    • Qian, Y., Giorgi, F., Huang, Y., Chameides, W. and Luo, C. 2001. Regional simulation of anthropogenic sulfur over East Asia and its sensitivity to model parameters. Tellus B. 53, 171 191.
    • Qian, Y., Leung, L. R., Ghan, S. J. and Giorgi, F. 2003. Regional climate effects of aerosols over China: modeling and observation. Tellus B. 55, 914 934.
    • Redmond, H. and Thompson, J. 2011. Evaluation of a quantitative structure-property relationship (QSPR) for predicting mid-visible refractive index of secondary organic aerosol (SOA). Phys. Chem. Chem. Phys. 13, 6872 6882.
    • Ren, G., Guo, J., Xu, M., Chu, Z., Zhang, L. and co-authors. 2005. Climate changes of China's mainland over the past half century. Acta. Meteorol. Sin. 63, 942 956.
    • Riipinen, I., Pierce, J. R., Yli-Juuti, T., Nieminen, T., Hakkinen, S. and co-authors. 2011. Organic condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations. Atmos. Chem. Phys. 11, 3865 3878.
    • Robinson, A. L., Donahue, N. M., Shrivastava, M. K., Weitkamp, E. A., Sage, A. M. and co-authors. 2007. Rethinking organic aerosols: semivolatile emissions and photochemical aging. Science. 315, 1259 1262.
    • Schell, B., Ackermann, I. J., Hass, H., Binkowski, F. S. and Ebel, A. 2001. Modeling the formation of secondary organic aerosol within a comprehensive air quality model system. J. Geophys. Res. Atmos. 106, 28275 28293.
    • Schnaiter, M., Horvath, H., Mohler, O., Naumann, K., Saathoff, H. and co-authors. 2003. UV-VIS-NIR spectral optical properties of soot and soot-containing aerosols. J. Aerosol. Sci. 34, 1421 1444.
    • Schnaiter, M., Linke, C., Mohler, O., Naumann, K., Saathoff, H. and co-authors. 2005. Absorption amplification of black carbon internally mixed with secondary organic aerosol. J. Geophys. Res. Atmos. 110, D19204.
    • Scott, C. E., Rap, A., Spracklen, D. V., Forster, P. M., Carslaw, K. S. and co-authors. 2014. The direct and indirect radiative effects of biogenic secondary organic aerosol. Atmos. Chem. Phys. 14, 447 470.
    • Seland, O., Iversen, T., Kirkevag, A. and Storelvmo, T. 2008. Aerosol-climate interactions in the CAM-Oslo atmospheric GCM and investigation of associated basic shortcomings. Tellus A. 60, 459 491.
    • Shalaby, A., Zakey, A., Tawfik, A., Solmon, F., Giorgi, F. and co-authors. 2012. Implementation and evaluation of online gas-phase chemistry within a regional climate model (RegCMCHEM4). Geosci. Model. Dev. 5, 741 760.
    • Shindell, D. T., Lamarque, J. F., Schulz, M., Flanner, M., Jiao, C. and co-authors. 2013. Radiative forcing in the ACCMIP historical and future climate simulations. Atmos. Chem. Phys. 13, 2939 2974.
    • Shrivastava, M., Fast, J., Easter, R., Gustafson, W., Zaveri, R. and co-authors. 2011. Modeling organic aerosols in a megacity: comparison of simple and complex representations of the volatility basis set approach. Atmos. Chem. Phys. 11, 6639 6662.
    • Shrivastava, M., Lane, T., Donahue, N., Pandis, S. and Robinson, A. 2008. Effects of gas particle partitioning and aging of primary emissions on urban and regional organic aerosol concentrations. J. Geophys. Res. Atmos. 113, D18301.
    • Singh, G., Oh, J., Kim, J. and Kim, O. 2006. Sensitivity of summer monsoon precipitation over east Asia to convective parameterization schemes in RegCM3. SOLA. 2, 29 32.
    • Skeie, R., Berntsen, T., Myhre, G., Tanaka, K., Kvalevag, M. and co-authors. 2011. Anthropogenic radiative forcing time series from pre-industrial times until 2010. Atmos. Chem. Phys. 11, 11827 11857.
    • Solmon, F., Elguindi, N. and Mallet, M. 2012. Radiative and climatic effects of dust over West Africa, as simulated by a regional climate model. Clim. Res. 52, 97 113.
    • Solmon, F., Giorgi, F. and Liousse, C. 2006. Aerosol modelling for regional climate studies: application to anthropogenic particles and evaluation over a European/African domain. Tellus B. 58, 51 72.
    • Spracklen, D. V., Bonn, B. and Carslaw, K. S. 2008. Boreal forests, aerosols and the impacts on clouds and climate. Phil. Trans. Math. Phys. Eng. Sci. 366, 4613 4626.
    • Spracklen, D. V., Jimenez, J. L., Carslaw, K. S., Worsnop, D. R., Evans, M. J. and co-authors. 2011. Aerosol mass spectrometer constraint on the global secondary organic aerosol budget. Atmos. Chem. Phys. 11, 12109 12136.
    • Tawfik, A., Stockli, R., Goldstein, A., Pressley, S. and Steiner, A. 2012. Quantifying the contribution of environmental factors to isoprene flux interannual variability. Atmos. Environ. 54, 216 224.
    • Tie, X., Li, G., Ying, Z., Guenther, A. and Madronich, S. 2006. Biogenic emissions of isoprenoids and NO in China and comparison to anthropogenic emissions. Sci. Total. Environ. 371, 238 251.
    • Trainic, M., Riziq, A., Lavi, A., Flores, J. and Rudich, Y. 2011. The optical, physical and chemical properties of the products of glyoxal uptake on ammonium sulfate seed aerosols. Atmos. Chem. Phys. 11, 9697 9707.
    • Wex, H., Petters, M., Carrico, C., Hallbauer, E., Massling, A. and co-authors. 2009. Towards closing the gap between hygroscopic growth and activation for secondary organic aerosol: part 1- evidence from measurements. Atmos. Chem. Phys. 9, 3987 3997.
    • Yang, F., Tan, J., Zhao, Q., Du, Z., He, K. and co-authors. 2011. Characteristics of PM2.5 speciation in representative megacities and across China. Atmos. Chem. Phys. 11, 5207 5219.
    • Yu, Y., Ezell, M., Zelenyuk, A., Imre, D., Alexander, L. and co-authors. 2008. Photooxidation of alpha-pinene at high relative humidity in the presence of increasing concentrations of NOx. Atmos. Environ. 42, 5044 5060.
    • Zarzana, K., De Haan, D., Freedman, M., Hasenkopf, C. and Tolbert, M. 2012. Optical properties of the products of alphadicarbonyl and amine reactions in simulated cloud droplets. Environ. Sci. Tech. 46, 4845 4851.
    • Zelenyuk, A., Ezell, M., Perraud, V., Johnson, S., Bruns, E. and co-authors. 2010. Characterization of organic coatings on hygroscopic salt particles and their atmospheric impacts. Atmos. Environ. 44, 1209 1218.
    • Zhang, H., Shen, Z., Wei, X., Zhang, M. and Li, Z. 2012a. Comparison of optical properties of nitrate and sulfate aerosol and the direct radiative forcing due to nitrate in China. Atmos. Res. 113, 113 125.
    • Zhang, X., Wang, Y., Niu, T., Zhang, X., Gong, S. and co-authors. 2012b. Atmospheric aerosol compositions in China: spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. Atmos. Chem. Phys. 12, 779 799.
    • Zheng, M., Salmon, L. G., Schauer, J. J., Zeng, L. M., Kiang, C. S. and co-authors. 2005. Seasonal trends in PM2.5 source contributions in Beijing, China. Atmos. Environ. 39, 3967 3976.
    • Zhong, M. and Jang, M. 2011. Light absorption coefficient measurement of SOA using a UV-visible spectrometer connected with an integrating sphere. Atmos. Environ. 45, 4263 4271.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Funded by projects

  • EC | REQUA

Cite this article