Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
García-Moya, Jose-Antonio; Callado, Alfons; Escribà, Pau; Santos, Carlos; Santos-Muñoz, Daniel; Simarro, Juan (2011)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article
Numerical weather prediction (NWP) models (including mesoscale) have limitations when it comes to dealing with severe weather events because extreme weather is highly unpredictable, even in the short range. A probabilistic forecast based on an ensemble of slightly differentmodel runs may help to address this issue. Among other ensemble techniques, Multimodel ensemble prediction systems (EPSs) are proving to be useful for adding probabilistic value to mesoscale deterministic models. A Multimodel Short Range Ensemble Prediction System (SREPS) focused on forecasting the weather up to 72 h has been developed at the SpanishMeteorological Service (AEMET). The system uses five different limited area models (LAMs), namely HIRLAM (HIRLAM Consortium), HRM (DWD), the UM (UKMO), MM5 (PSU/NCAR) and COSMO (COSMO Consortium). These models run with initial and boundary conditions provided by five different global deterministic models, namely IFS (ECMWF), UM (UKMO), GME (DWD), GFS (NCEP) and CMC (MSC). AEMET-SREPS (AE) validation on the large-scale flow, using ECMWF analysis, shows a consistent and slightly underdispersive system. For surface parameters, the system shows high skill forecasting binary events. 24-h precipitation probabilistic forecasts are verified using an up-scaling grid of observations from European high-resolution precipitation networks, and compared with ECMWF-EPS (EC).
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Andersson, E., Haseler, J., Unde´n, P., Courtier, P., Kelly, G. and coauthors. 1998. The ECMWF implementation of the three-dimensional variational assimilation (3D-Var). III: experimental results. Q. J. R. Meteorol. Soc. 124, 1831-1860.
    • Anderson, J. L. 1996. A method for producing and evaluating probabilistic forecasts from ensemble model integrations. J. Clim. 9, 1518-1530.
    • Arribas, A., Robertson, K. B. and Mylne, K. R. 2005. Test of poor man's ensemble prediction system. Mon. Wea. Rev. 133, 1825-1839.
    • Atger, F. 2003. Spatial and interannual variability of the reliability of ensemble-based probabilistic forecasts: consequences for calibration. Mon. Wea. Rev. 131, 1509-1523.
    • Bishop, C. H., Etherton, B. J. and Majumdar, S. J. 2001. Adaptive sampling with the ensemble transform Kalman filter. Part I: theoretical aspects. Mon. Wea. Rev. 129, 420-436.
    • Bowler, N. E. and Mylne, K. R. 2009. Ensemble transform Kalman filter perturbations for a regional ensemble prediction system. Quart. J. Roy. Met. Soc. 135, 757-766.
    • Bowler, N. E., Arribas, A., Mylne, K. R., Robertson K. B. and Beare S. E. 2008. The MOGREPS short-range ensemble prediction system. Q. J. R. Meteorol. Soc. 134, 703-722.
    • Bowler, N. E., Arribas, A., Beare, S. E., Mylne, K. R. and Shutts G. J. 2009. The local ETKF and SKEB: upgrades to the MOGREPS short-range ensemble prediction system. Q. J. R. Meteorol. Soc. 135, 767-776.
    • Bright, D. R. and Mullen, S. L. 2002. Short-range ensemble forecasts of precipitation during the southwest monsoon. Weather Forecast. 17, 1080-1100.
    • Buizza, R. and Palmer, T. 1995. The singular vectors structure of the atmospheric general circulation. J. Atmos Sci. 52, 1434-1456.
    • Buizza, R. and Palmer, T. 1997. Potential forecast skill of ensemble prediction, and spread and skill distributions of the ECMWF ensemble prediction system. Mon. Wea. Rev. 125, 99-119.
    • Buizza, R. and Palmer T. N. 1998. Impact of ensemble size on ensemble prediction. Mon. Wea. Rev. 126, 2503-2518.
    • Buizza, R., Miller, M. and Palmer, T. 1999. Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Q. J. R. Meteorol. Soc. 125, 2887-2908.
    • Candille, G. and Talagrand, O. 2005. Evaluation of probabilistic prediction systems for a scalar variable. Q. J. R. Meteorol. Soc. 131, 2131-2150.
    • Casati, B., Wilson, L. J., Stephenson, D. B., Nurmi, P., Ghelli, A. and co-authors. 2008. Forecast verification: current status and future directions. Met. Appl. 15, 3-18.
    • Cherubini, T., Ghelli, A. and Lalaurette, F. 2002. Verification of precipitation forecasts over the Alpine region using a high-density observing network. Weather Forecast, 17, 238-248.
    • Clark, A. J., Gallus W. A. Jr. and Chen, T. 2008. Contributions of mixed physics versus perturbed initial/lateral boundary conditions to ensemble-based precipitation forecast skill. Mon. Wea. Rev. 136(6), 2140-2156.
    • Coˆ te´, J., Desmarais, J. G., Gravel, S., Me´thot, A., Patoine, A. and co-authors. 1998a. The operational CMC-MRB global environmental multiscale (GEM) model. Part II: results. Mon. Wea. Rev. 126, 1397-1418.
    • Coˆ te´, J., Gravel, S., Me´thot, A., Patoine, A., Roch, M. and co-authors. 1998b. The operational CMC-MRB global environmental multiscale (GEM) model. Part I: design considerations and formulation. Mon. Wea. Rev. 126, 1373-1395.
    • Cullen, M. J. P. 1993. The unified forecast/climate model. Meteorol. Mag. 122, 81-94.
    • Doms, G. and Scha¨ttler, U. 1997. The nonhydrostatic area model LM (Lokal-Modell) of DWD. Part I: scientific documentation. Deutscher Wetterdienst (DWD), Offenbach. March 1997.
    • Dudhia, J. 1993. A nonhydrostatic penn state-NCAR mesoscale model: validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev. 121, 1493-1523.
    • Ebisuzaki, W. and Kalnay, E. 1991. Ensemble experiments with new lagged average forecasting scheme. WMO Research Activities in Atmospheric and Oceanic Modeling Rep. 15, 308 pp.
    • Emanuel, K. A. 1979. Inertial instability and mesoscale convective systems. Part I: linear theory of inertial instability in rotating viscous fluids. J. Atmos. Sci. 36, 2425-2449.
    • Ferro, C. A. T. 2007. Comparing probabilistic forecasting systems with the Brier score. Weather Forecast, 22, 1076-1089.
    • Ferro, C. A. T., Richardson, D. S. and Weigel, A. P. 2008. On the effect of ensemble size on the discrete and continuous ranked probability scores. Met. Appl. 15, 19-24.
    • Frogner, I.-L. and Iversen, T. 2001: Targeted ensemble prediction for northern Europe and parts of the north Atlantic Ocean. Tellus 53A, 35-55.
    • Frogner, I.-L., Haakenstad, H. and Iversen, T. 2006. Limited-area ensemble predictions at the Norwegian Meteorological Institute. Q. J. R. Meteorol. Soc. 132, 2785-2808.
    • Grell, G. A., Dudhia, J. and Stauffer, D. R. 1994. A description of the fifth-generation Penn State/NCAR mesoscale model (MM5). NCAR Technical Note, NCAR/TN-398+STR, 117 pp.
    • Gutie´rrez, J. M., Cofin˜ o, A. S., Cano, R. and Rodr´ıguez, M. A. 2004. Clustering methods for statistical downscaling in short-range weather forecasts. Mon. Wea. Rev. 132, 2169-2183.
    • Hacker, J. P., Krayenhoff, E. S. and Stull, R. B. 2003. Ensemble experiments on numerical weather prediction error and uncertainty for a north Pacific forecast failure. Weather Forecast, 18, 12-31.
    • Hamill, T. M. 2001. Interpretation of rank histograms for verifying ensemble forecasts. Mon. Wea. Rev. 129, 550-560.
    • Hamill, T. M. and Colucci, S. J. 1997: Verification of ETA-RSM shortrange ensemble forecast. Mon. Wea. Rev. 125, 1322-1327.
    • Hamill, T. M. and Colucci, S. J. 1998. Evaluation of Eta-RMS ensemble probabilistic precipitation forecasts. Mon. Wea. Rev. 126, 711- 724.
    • Hamill T. M. and Juras J. 2006. Measuring forecast skill: is it real or is it the varying climatology?. Q. J. R. Meteorol. Soc. 132, 2905- 2923.
    • Hamill, T. M., Snyder, C. and Morss, R. E. 2000. A comparison of probabilistic forecasts from bred, singular-vector, and perturbed observation ensembles. Mon. Wea. Rev. 128, 1835-1851.
    • Hoffman, R. N. and Kalnay, E. 1983. Lagged average forecasting, an alternative to Monte Carlo forecasting. Tellus 35A, 100-118.
    • Hohenegger, C. and Scha¨r, C. 2007: Atmospheric predictability at synoptic versus cloud-resolving scales. Bull. Am. Meteor. Soc. 88, 1783-1793.
    • Hollingsworth, A. 1980. An experiment in Monte Carlo forecasting. In: Proceedings of the Workshop on Stochastic-Dynamic Forecasting, Reading, United Kingdom, ECMWF, 65-85.
    • Hou, D., Kalnay, E. and Droegemeier, K. 2001. Objective verification of the SAMEX'98 ensemble forecast. Mon. Wea. Rev. 129, 73-91.
    • Houtekamer, P. L., Lefaiver, L., Derome, J., Ritchie, H. and Mitchell, H. L. 1996. A system simulation approach to ensemble prediction. Mon. Wea. Rev. 124, 1225-1242.
    • Jakob, C., Andersson, E., Beljaars, A., Buizza, R., Fisher, M. and coauthors. 1999. The IFS cycle CY21r4 made operational in October 1999. ECMWF Newsletter, 87, 2-9.
    • Jolliffe, I. T. 2007. Uncertainty and inference for verification measures. Weather Forecast, 22, 637-650.
    • Jolliffe, I. T. and Stephenson, D. B. 2003. Forecast Verification: A Practitioner's Guide in Atmospheric Science. Wiley, New York.
    • Kharin, V. V. and Zwiers, F. W. 2003. On the ROC score of probability forecasts. J. Clim. 16, 4145-4150.
    • Leith, C. E. 1974. Theoretical skill of Monte Carlo forecast. Mon. Wea. Rev. 102, 409-418.
    • Leslie, L. M. and Speer, M. S. 1998. Short-range ensemble forecasting of explosive Australian east coast cyclogenesis. Weather Forecast, 13, 822-832.
    • Lorenz, E. N. 1963. Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130-141.
    • McDonald, A. and Haugen, J. 1992. A two-time-level, three-dimensional semi-Lagrangian, semi-implicit, limited-area gridpoint model of the primitive equations. Mon. Wea. Rev. 120, 2603-2621.
    • Majewski, D. 1991. The Europa-Modell of DWD. In: Proceedings of ECMWF Seminar on Numerical Methods in Atmospheric Science 2, 147-191, ECMWF, Reading, UK.
    • Majewski, D., Liermann, D., Prohl, P., Ritter, B., Buchhold, M. and coauthors. 2002. The operational Global Icosahedral-Hexagonal gridpoint model GME: description and high-resolution tests. Mon. Wea. Rev. 130, 319-338.
    • Marsigli, C., Montani, A., Nerozzi, F. and Paccagnella, T. 2004. Probabilistic high-resolution forecast of heavy precipitation over Central Europe. Nat. Hazard. Earth Sys. 4, 315-322.
    • Marsigli, C., Montani, A. and Paccangnella, T. 2008. A spatial verification method applied to the evaluation of high-resolution ensemble forecasts. Met. Appl. 15, 125-143.
    • Mason, S. J. 2004. On using “climatology” as a reference strategy in the Brier and ranked probability skill scores. Mon. Wea. Rev. 132, 1891-1895.
    • Mason, S. 2008. Understanding forecast verification statistics. Met. Appl. 15, 31-40.
    • Molteni, F., Buizza, R., Palmer, T. N. and Petroliagis, T. 1996. The ECMWF ensemble prediction system: methodology and validation. Q. J. R. Meteorol. Soc. 122, 73-120.
    • Mullen, S. L. and Baumhefner, D. P. 1989. The impact of initial condition uncertainty on numerical simulations of large-scale explosive cyclogenesis. Mon. Wea. Rev. 117, 2800-2821.
    • Murphy, J. M. 1988. The impact of ensemble forecasts on predictability. Q. J. R. Meteorol. Soc. 114, 463-493.
    • Palmer, T. N., Barkmeier, J., Buizza, R. and Petroliagis, T. 1997. The ECMWF ensemble prediction system. Meteorol. Appl. 4, 301- 304.
    • Palmer, T. N., Alessandri, A., Andersen, U., Cantelaube, P., Davey, M. and co-authors. 2004. Development of a European multi-model ensemble system for seasonal to inter-annual prediction (DEMETER). Bull. Am. Meteorol. Soc. 85, 853-872.
    • Podzun, R., Cress, A., Majewski, D. and Renner, V. 1995. Simulation of European climate with a limited area model. Part II: AGCM boundary conditions. Contrib. Atmos. Phys. 68, 205-226.
    • Roebber, P. J. and Reuter, G. W. 2002. The sensitivity of precipitation to circulation details. Part II: mesoscale modeling. Mon. Wea. Rev. 130, 3-23.
    • Sela, J. G. 1980. Spectral modeling at the National Meteorological Center, Mon. Wea. Rev. 108, 1279-1292.
    • Sela, J. G. 1982. The NMC spectral model, NOAA Technical Report NWS-30, 36 pp.
    • Simmons, A. J., Burridge, D. M., Jarraud, M., Girard, C. and Wergen, W. 1989. The ECMWF medium-range prediction models: development of the numerical formulations and the impact of increased resolution. Meteorol. Atmos. Phys. 40, 28-60.
    • Stensrud, D. J. and Weiss, S. J. 2002. Mesoscale model ensemble forecasts of the 3 May 1999 Tornado outbreak. Weather Forecast, 17, 526-543.
    • Stensrud, D. J. and Yussouf, N. 2007. Reliable probabilistic quantitative precipitation forecasts from a short-range ensemble forecast system. Weather Forecast, 22, 3-17.
    • Stensrud, D. J., Bao, J.-W. and Warner, T. T. 2000. Using Initial Condition and Model Physics Perturbations in Short-Range Ensemble Simulations of Mesoscale Convective Systems. Mon. Wea. Rev. 128, 2077-2107.
    • Stensrud, D. J., Brooks, H. E., Du, J., Tracton, M. S. and Rogers, E. 1999. Using ensembles for the short-range forecasting. Mon. Wea. Rev. 127, 433-446.
    • Swets, J. A. 1988. Measuring the accuracy of diagnostic systems. Science, 240(4857):1285-1289.
    • Toth, Z. and Kalnay, E. 1993. Ensemble forecasting at NMC: the generation of perturbations. Bull. Am. Meteor. Soc. 74, 2317- 2330.
    • Toth, Z. and Kalnay, E. 1997. Ensemble forecasting at NCEP: the breeding method. Mon. Wea. Rev. 125, 3297-3318.
    • Tracton, M. S., Du, J., Toth, Z. and Juang, H. 1998. Short-range ensemble forecasting (SREF) at NCEP/ECM. In: Proceedings of the 12th Conference on Numerical Weather Prediction, Phoenix, American Meteorological Society, pp. 269-272.
    • Unde´n, P., Rontu, L., Ja¨rvinen, H., Lynch, P., Calvo, J. and co-authors. 2002. HIRLAM-5 Scientific Documentation. Available from Hirlam5 Project, c/o Per Unde´n, SMHI, S-60176, Norrko¨ ping, Sweden, 144 pp.
    • Wandishin, M. S., Stensrud, D. J., Mullen, S. L. and Wicker, L. J. 2008. On the predictability of mesoscale convective systems: twodimensional simulations. Weather Forecast, 23, 773-785.
    • Wandishin, M. S., Stensrud, D. J., Mullen, S. L. and Wicker, L. J. 2010. On the predictability of mesoscale convective systems: threedimensional simulations. Mon. Wea. Rev. 138, 863-885.
    • Wang, X. and Bishop C. H. 2003. A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes. J. Atmos. Sci. 60, 1140-1158.
    • Whitaker, J. S. and Loughe, A. F. 1998. The relationship between ensemble spread and ensemble mean skill. Mon. Wea. Rev. 126, 3292-3302.
    • Wilks, D. S. 1995. Statistical Methods in Atmospheric Sciences. Academic Press, San Diego, CA, 467 pp.
    • Wilson, L. J. 2000. Comments on “Probabilistic Predictions of Precipitation Using the ECMWF Ensemble Prediction System”. Weather Forecast, 15, 361-364.
    • Zhang, F. 2005. Dynamics and structure of mesoscale error covariance of a winter cyclone estimated through shortrange ensemble forecasts. Mon. Wea. Rev. 133, 2876- 2893.
    • Ziehmann, C. 2000. Comparison of a single-model EPS with a multimodel ensemble consisting of a few operational models. Tellus 52A, 280-299.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article

Collected from