Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Zhu, Min; Wadge, Geoff; Holley, Rachel J.; James, Ian N.; Clark, Peter A.; Wang, Changgui; Woodage, Margaret J. (2008)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article
The structure of the precipitable water (PW) field over mountains is difficult to observe and can have a complex form. We demonstrate a method to analyse this structure with a case study at the Etna volcano in Sicily. The method involves decomposition of the PW field, power spectral analysis and high-resolution numerical modelling including an experiment to showthe sensitivity to solar radiative forcing which can drive the mesoscale circulations and consequently the complex patterns of water vapour advection in complex terrain near a coastline. The PW decomposition and power spectral analysis were applied to both the model data and remotely sensed MODIS data. The PW field has two structural components: a horizontal mean component and a horizontal perturbation component that possesses a wave number kdependence of k −5/3 in the mesoscale range. For our case example (summer, mid-morning) we show that the horizontally perturbed component is largely driven by the combined land-sea and upslope breeze effects.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Avara, P., Kays, M. 1971. The effect of interpolation of data upon the harmonic coefficients. ECOM, 5354, Defense Technical Information Center, 33 pp.
    • Baines, P. G. 1995. Topographic effects in stratified flows, Cambridge University Press, Cambridge, 482 pp.
    • Balmino, G. 1993. The spectra of the topography of the Earth, Venus and Mars. Geophys. Res. Lett. 20, 1063-1066.
    • Bastin, S., Champollion, C., Bock, O., Drobinski, P. 2005. On the use of GPS tomography to investigate water vapour variability during a Mistral/sea breeze event in southeastern France. Geophys. Res. Lett. 32, L05808, doi: 10.1029/2004GL021907.
    • Cho, J. Y. N., Zhu, Y., Newell, R. E., Anderson, B. E., Barrick, J. D. and co-authors. 1999. Horizontal wavenumber spectra of winds, temperature and trace gases during the Pacific Exploratory Missions: 1. Climatology. J. Geophys. Res. 104(D5), 5697-5716.
    • Favalli, M., Mazzarini, F., Pareschi, M. T. and Boschi, E. 2004. Role of local wind circulation in plume monitoring at Mt. Etna volcano (Sicily): Insights from a mesoscale numerical model. Geophys. Res. Lett. 31, L09105, doi:10.1029/2003GL019281.
    • Foster, J. and Bevis, M. 2003. Lognormal distribution of precipitable water in Hawaii. Geochem. Geophys. Geosys. 4(7), 1065, doi;10.1029/2002GC000478.
    • Hanssen, R. 2001. Radar interferometry data interpretation and data analysis, Kluwer Academic, Dordrecht, 308 pp.
    • Koshyk, J. N., Boville, B. A., Hamilton, K., Manzini, E. and Shibata, K. 1999. Kinetic energy spectrum of horizontal motions in middleatmosphere models. J. Geophys. Res. 104, 27177-27190.
    • Kuo, Y.-H., Zou, X. and Guo, Y.-R. 1996. Variational assimilation of precipitable water using a nonhydrostatic mesoscale adjoint model. Part I: Moisture retrieval and sensitivity experiment. Mon. Weather Rev. 124, 122-147.
    • Li, Z., Muller, J.-P., Cross, P. and Fielding, E. J. 2005. Interferometric synthetic aperture radar (InSAR) atmospheric correction: GPS, Moderate Resolution Imaging Spectroradiometer (MODIS) and InSAR integration. J. Geophys. Res. 110(B3), B03410, doi:10.1029/2004JB003446.
    • Met Office 2004 “Unified Model User Guide”, Available online at: http://www.cgam.nerc.ac.uk/um/docs/
    • Massonnet, D. and Feigl, K. L. 1998. Radar interferometry and its application to changes in the Earth's surface. Rev. Geophys. 36(4), 441- 500.
    • Miranda, P. M. A. and James, I. N. 1992. Non-linear three-dimensional effects on gravity-wave drag: Splitting flow and breaking waves. Q. J. R. Meteorol. Soc. 118, 1057-1081.
    • Nastrom, G. D. and Gage, K. S. 1985. A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci. 42(9), 950-960.
    • Remy, D., Bonvalot, S., Briole, P. and Murakami, M. 2003. Accurate measurements of tropospheric effects in volcanic areas from SAR interferometry data: Application to Sakurajima volcano (Japan). Earth Planet. Sci. Lett. 67(30), 1-12.
    • Rotunno, R. and Ferretti, R. 2001. Mechanisms of intense Alpine rainfall. J. Atmos. Sci. 38, 1732-1749.
    • Skamarock, W. C. 2004. Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev. 132, 3019-3032.
    • Trenberth, E., Fasullo, J. and Smith, L. 2005. Trends and variability in column-integrated atmospheric water vapour. Climate Dynam. 24, 741-758, DOI 10.1007/s0038-005-0017-4.
    • Wadge, G., Webley, P. W., James, I. N., Bingley, R., Dodson, A. and coauthors. 2002. Atmospheric models, GPS and InSAR measurements of the tropospheric water vapour field over Mount Etna. Geophys. Res. Lett. 29(19), 1905, doi:10.1029/2002GL015159.
    • Zhu, M., Wadge, G., Holley, R. J., James, I. N., Clark, P. A. and coauthors. 2007. High resolution forecast models of water vapor over mountains: comparison with MERIS and Meteosat data. Geosc. Rem. Sens. Lett. 4(3), 401-405.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from