LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Nakaoka, Shin-Ichiro; Aoki, Shuji; Nakazawa, Takakiyo; Hashida, Gen; Morimoto, Shinji; Yamanouchi, Takashi; Yoshikawa-Inoue, Hisayuki (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects:
In order to elucidate the seasonal and interannual variations of oceanic CO2 uptake in the Greenland Sea and the Barents Sea, the partial pressure of CO2 in the surface ocean (pCO2sea) was measured in all seasons between 1992 and 2001. We derived monthly varying relationships between pCO2sea and sea surface temperature (SST) and combined them with the SST data from the NCEP/NCAR reanalysis to determine pCO2sea and air–sea CO2 flux in these seas. The pCO2sea values were normalized to the year 1995 by assuming that pCO2sea increased at the same growth rate (1.5 μatm yr−1) of the pCO2 in the air (pCO2air) between 1992 and 2001. In 1995, the annual net air–sea CO2 fluxes were evaluated to be 52 ± 20 gC m−2 yr−1 in the Greenland Sea and 46 ± 18 gC m−2 yr−1 in the Barents Sea. The CO2 flux into the ocean reached its maximum in winter and minimum in summer. The wind speed and ΔpCO2 (=pCO2air–pCO2sea) exerted a greater influence on the seasonal variation than the sea ice coverage. The annual CO2uptake examined in this study (70°–80°N, 20°W–40°E) was estimated to be 0.050 ± 0.020 GtCyr−1 in 1995. The interannual variation in the annual CO2 uptake was found to be positively correlated with the North Atlantic Oscillation Index (NAOI) via wind strength but negatively correlated with ΔpCO2 and the sea ice coverage. The present results indicate that the variability in wind speed and sea ice coverage play a major role, while that in ΔpCO2 plays a minor role, in determining the interannual variation of CO2 uptake in this area.DOI: 10.1111/j.1600-0889.2006.00178.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Aagaard, K., Swift, J. H. and Carmack, E. C. 1985. Thermohaline circulation in the Arctic Mediterranean seas. J. Geophys. Res. 90, 4833-4846.
    • Anderson, L. G. 1995. Chemical oceanography of the Arctic and its shelf seas. In: Arctic Oceanography: Marginal Ice Zones and Continental Sand Estuarine Studies (eds W. O. Smith, Jr. and J. M. Grebmeier). American Geophysical Union, Washington, DC, pp. 183- 202.
    • Anderson, L. G., Drange, H., Chierici, M., Fransson, A., Johannessen, T. and co-authors. 2000. Annual carbon fluxes in the upper Greenland Sea based on measurements and a box-model approach. Tellus 52B, 1013-1024.
    • Broecker, W. S. and Peng, T. H. 1982. Tracer in the Sea, 690 pp. Eldigio Press, Palisades, New York.
    • Cosca, C. E., Feely, R. A., Boutin, J., Etcheto, J., McPhaden, M. J. and co-authors 2003. Seasonal and interannual CO2 flux for the central and eastern equatorial Pacific Ocean as determined from f CO2-SST relationships. J. Geophys. Res. 108(C8), 3278, doi:10.1029/2000JC000677.
    • Dandonneau, Y. 1995. Sea-surface partial pressure of carbon dioxide in the eastern equatorial Pacific (August 1991 to October 1992): a multivariate analysis of physical and biological factors. Deep-Sea Res. II 42, 349-364.
    • Feely, R. A., Boutin, J., Cosca, C. E., Dandonneau, Y., Etcheto, J. and co-authors 2002. Seasonal and interannual variability of CO2 in the equatorial Pacific. Deep-Sea Res. II 49, 2443- 2470.
    • Francey, R. J., Tans, P. P., Allison, C. E., Enting, I. G., White, J. W. C. and co-author 1995. Changes in oceanic and terrestrial carbon uptake since 1982. Nature 373, 326-330.
    • Fransson, A., Chierici, M., Anderson, L. G., Bussman, I., Jones, E. P. and co-author 2001. The importance of shelf processes for the modification of chemical constituents in the waters of the eastern Arctic Ocean. Shelf Res. 21, 225-242.
    • Furevik, T. 2001. Annual and interannual variability of Atlantic water temperatures in the Norwegian and Barents Seas: 1980-1996. DeepSea Res. I 48, 383-404.
    • Gruber, N., Keeling, C. D. and Bates, N. R. 2002. Interannual variability in the North Atlantic Ocean carbon sink. Science 298, 2374- 2378.
    • Hood, E. M., Merlivat, L. and Johannessen, T. 1999. Variations of f CO2 and air-sea flux of CO2 in the Greenland Sea gyre using highfrequency time series data from CARIOCA drift buoys. J. Geophys. Res. 104(C9), 20 571-20 583.
    • Inoue, H. Y., Matsueda, H., Ishii, M., Fushimi, K., Hirota, M., Asanuma, I. and Takasugi, Y. 1995. Long-term trend of the partial pressure of carbon dioxide (pCO2) in surface waters of the western North Pacific 1984-1993. Tellus 47B, 391-413.
    • Inoue, H. Y. and Ishii, M. 2005. Variations and trend of CO2 in the surface seawater in the Southern Ocean south of Australia between 1969 and 2002. Tellus 57B, 58-69.
    • Jones, P. D., Osborn, T. J., Briffa, K. R., Folland, C. K., Horton, E. B. and co-authors 2001. Adjusting for sampling density in grid box land and ocean surface temperature time series. J. Geophys. Res. 106, 3371-3380.
    • Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D. and coauthors 1996. The NCEP/NCAR 40-Year Reanalysis Project. Bull. of Am. Meteorol. Soc. 77, 437-472.
    • Kaltin, S., Anderson, L. G., Olsson, K., Fransson, A. and Chierici, M. 2002. Uptake of atmospheric carbon dioxide in the Barents Sea. J. Marine Systems 38, 31-45.
    • Keeling, R. F. and Shertz, S. R. 1992. Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon cycle. Nature 358, 723-727.
    • Keeling, C. D., Whorf, T. P., Wahlen, M. and van der Plicht, J. 1995. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375, 666-670.
    • Keeling, C. D., Brix, H. and Gruber, N. 2004. Seasonal and long-term dynamics of the upper ocean carbon cycle at Station ALOHA near Hawaii. Global Bogeochem. Cycles 18, GB4006, doi:10.1029/2004GB002227.
    • Lefe`vre, N., Watson, A. J., Olsen, A. and Johannessen, T. 2004. A decrease in the sink for atmospheric CO2 in the North Atlantic. Geophys. Res. Lett. 31, L07306 doi:10.1029/2003GL018957.
    • Le Que´re´, C., Aumont, O., Bopp, L., Bousquet, P., Ciais, P. and coauthors. 2003. Two decades of ocean CO2 sink and variability. Tellus 55B, 649-656.
    • Midorikawa, T., Nemoto, K., Kamiya, H., Ishii, M. and Inoue, H. Y. 2005. Persistently strong oceanic CO2 sink in the western subtropical North Pacific. Geophys. Res. Lett. 32, L05612, doi:10,1029/2004GL021952.
    • Morimoto, S., Aoki, S. and Yamanouchi, T. 2001. Temporal variations of atmospheric CO2 concentration and carbon isotope ratio in NyAlesund, Svalbard, ”Environmental Research in the Arctic 2000”. Mem. Natl. Inst. Polar Res. Spec. Issue 54, 71-80.
    • Nakazawa, T., Morimoto, S., Aoki, S. and Tanaka, M. 1997. Temporal and spatial variations of the carbon isotopic ratio of atmospheric carbon dioxide in the western Pacific region. J. Geophys. Res. 102, 1271-1285.
    • Noji, T. T., Miller, L. A., Skjelvan, I., Falck, E., Børsheim, K. Y. and co-authors. 2000. Constrains on carbon drawdown and export in the Greenland sea. In: The Northern North Atlantic: A Changing Environment (eds. P. Scha¨fer, W. Ritzrau, M. Schlu¨ter and J. Thiede). Springer, Berlin. pp. 39-52.
    • Olsen, A., Bellerby, R. G. J., Johannessen, T., Omar, A. and Skjelvan, I. 2003. Interannual variability in the wintertime air-sea flux of carbon dioxide in the northern North Atlantic, 1981-2001. Deep-Sea Res. I 50, 1323-1338.
    • Omar, A., Johannessen, T., Kaltin, S. and Olsen, A. 2003. Anthropogenic increase of oceanic pCO2 in the Barents Sea surface water. J. Geophys. Res. 108(C12), 3388, doi:10.1029/2002JC001628.
    • Overland, J. E. and Wang, M. 2005. The Arctic climate paradox: the recent decrease of the Arctic oscillation. Geophys. Res. Lett. 32, L06701, doi:10.1029/2004GL021752.
    • Prentice, I. C., Farquhar, G. D., Fasham, N. J. R., Goulden, M. L., Heimann, M. and co-authors. 2001. The carbon cycle and atmospheric CO2. In: Climate Change: The Scientific Basis, the Contribution of WG1 of the IPCC to the IPCC Third Assessment Report (TAR) (eds. J. T. Houghton and D. Yihui). Cambridge University Press, Cambridge, UK, pp. 183-237.
    • Rayner, P. J., Enting, I. G., Francey, R. J. and Langenfelds, R. L. 1999. Reconstructing the recent carbon cycle from atmospheric CO2, δ13C and O2/N2 observations. Tellus 51B, 213-232.
    • Schlosser, P., Bo¨nisch, G., Kromer, B. and Mu¨nnich, K. O. 1990. Ventilation rates in the Nansen Basin of the Arctic Ocean derived from a multitracer approach. J. Geophys. Res. 95, 3265-3272.
    • Skjelvan, I., Johannessen, T. and Miller, L. A. 1999. Interannual variability of CO2 in the Greenland and Norwegian Seas. Tellus 51B, 477-489.
    • Smith, S. R., Legler, D. M. and Verzone, K. V. 2001. Quantifying uncertainties in NCEP reanalysis using high-quality research vessel observations. J. Climate 14, 4062-4072.
    • Takahashi, T., Olafsson, J., Godard, J. G., Chipman, D. W. and Sutherland, S. C. 1993. Seasonal variation of CO2 and nutrient in the highlatitude surface oceans: a comparative study. Global Biogeochem. Cycles 7(4), 843-878.
    • Takahashi, T., Stewart, C. S., Sweeney, C., Poisson, A., Metzl, N. and co-authors. 2002. Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Res. II 49, 1601-1622.
    • Tanaka, M., Nakazawa, T. and Aoki, S. 1987. Time and space variations of tropospheric carbon dioxide over Japan. Tellus 39B, 3-12.
    • Tans, P. P., Fung, I. Y. and Takahashi, T. 1990. Observational constraints on the global atmospheric CO2 budget. Science 247, 1431- 1438.
    • Wallace, J. M. and Gutzler D. S. 1981. Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev. 109, 784-812.
    • Wanninkhof, R. 1992. Relationship between wind speed and gas exchange. J. Geophys. Res. 97, 7373-7382.
    • Wanninkhof, R. and McGills, W. R. 1999. A cubic relationship between air-sea CO2 exchange and wind speed. Geophys. Res. Lett. 26, 1889- 1993.
    • Wanninkhof, R., Feely, R. A., Chen, H., Cosca, C. E. and Murphy, P. P. 1996. Surface water f CO2 in the eastern equatorial Pacific during the 1992-1993 El Nin˜o. J. Geophys. Res. 101, 16 333- 16 343.
    • Watai, T., Kikuchi, M. and Nakazawa, T. 1998. Temporal variations of surface oceanic and atmospheric CO2 fugacity and total dissolved inorganic carbon in the northwestern North Pacific. J. Oceanogr. 54, 323-336.
    • Weiss, R. F. 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar. Chem. 2, 203-215.
    • Weiss, R. F., Van Woy, F. A. and Salameh, P. K. 1992. Surface water and atmospheric carbon dioxide and nitrous oxide observations by shipboard automated gas chromatography: results from expeditions between 1977 and 1990. Scripps Institute of Oceanography. Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory. NDP-044.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from