LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Teitelbaum, H.; Basdevant, C.; Moustaoui, M. (2011)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article
Subjects:
An instrumented balloon launched from Kiruna during the SESAME experiment displayedsimultaneous local decreases of water vapor and aerosol at 2 different potential temperaturelevels 410 K and 364 K. Despite the similar characteristics present at both levels, 2 differentexplanations are given for these laminae. At the highest level, the air mass showing the watervapor and aerosol decrease is found when the balloon travels in the vortex edge region. A backtrajectory shows that this air mass was trapped in the vortex edge region for several days andprocessed by a PSC causing the water vapor and aerosol decreases. On the other hand, thelowest level air mass was found to be in the sub-vortex region. No local conditions can explainthe observed decreases of water vapor and aerosol. Back trajectories show that this air massoriginates from middle latitudes. Although the back trajectories calculated in these conditionsare more subject to caution, comparison of several characteristics at the measurement pointand at the middle latitude sites corroborates the explanation of the decrease of water vaporand aerosol by the origin of the air mass.DOI: 10.1034/j.1600-0870.2000.00072.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Brasseur, G. and Solomon, S. 1998. Aeronomy of the middle atmosphere. D. Reidel Publishing Company, 436 pp.
    • Butchart, N. and Remsberg, E. E. 1986. The area of the stratospheric polar vortex as a diagnostic for tracer transport on an isentropic surface. J. Atmos. Sci. 43, 1319-1339.
    • Chen, P., Holton, J. R., O'Neill, A. and Swinbank, R. 1994. Quasi-horizontal transport and mixing in the Antarctic stratosphere. J. Geophys. Res. 99, 16,851-16,866.
    • Danielsen, E. F. 1968. Stratospheric-tropospheric exchange based in radioactivity, ozone and potential vorticity. J. Atmos. Sci. 25, 502-518.
    • Dobson, G. 1973. The laminated structure of the ozone in the atmosphere. Q. J. R. Meteorol. Soc. 99, 599-607.
    • Emanuel, K. A. 1994. Atmospheric convection. Oxford University Press, 580 pp.
    • Hanson, D. R. and Mauersberger, K. 1988. Laboratory studies of the nitric acid trihydrate: implication for the South Polar Stratosphere. Geophys. Res. L ett. 15, 855-858.
    • Hoeˆrling, M. P., Schaack, T. K. and Lenzen, A. J. 1991. Global objective tropopause analysis. Mon. Wea. Rev. 119, 1816-1831.
    • Holton, J. R., Haynes, P. H., McIntyre, M. E., Douglass, A. R., Rood, R. and Pfister, L. 1995. Stratospheretroposphere exchange. Rev. of Geophys. 33, 403-439.
    • Hoskins, B. J. 1991. Towards a PV-h view of the general circulation. T ellus 43A/B, 27-35.
    • Jost, H., Lowenstein, M., Pfister, L., Margitan, J. J., Chang, A. Y., Salawitch, R. J. and Michelsen, H. A. 1998. Laminae in the tropical middle stratosphere: origin and age estimation. Geophys. Res. L ett. 25, 4337-4340.
    • Kar, J. and Mahajan, K. K. 1998. Evidence of transport in water vapor profiles at mid-latitudes from Stratospheric Aerosol and Gas Experiment (SAGE II) measurements. J. Geophys. Res. 103, 31,057-31,065.
    • Kley, D., Drummond, J. W. and Schmeltekopf, A. L. 1980. On the structure and microstructure of stratospheric water vapor. In: Atmospheric water vapor (eds. Deepak, A., Wilkerson, T. D. and Runke, L. H.). Academic Press (New York), p. 315.
    • Kley, D., Schmeltekopf, A. L., Kelly, K., Winkler, R. H., Thomson, T. L. and McFarland, L. 1982. Transport of water vapor through the tropical tropopause. Geophys. Res. L ett. 9, 617-620.
    • Knudsen, B. M., Rosen, J. M., Kjome, N. T. and Whitten, A. T. 1996. Comparison of analyzed stratospheric temperatures and calculated trajectories with long-duration balloon data. J. Geophys. Res. 101, 19,137-19,145.
    • Knudsen, B. M. 1996. Accuracy of arctic stratospheric temperature analyses and the implication for the prediction of polar stratospheric clouds. Geophys. Res. L ett. 23, 3747-3750.
    • Manney, G. L., Bird, J. C., Donovan, D. P., Duck, T. J., Whiteway, J. A., Pal, S. R. and Carswell, A. I. 1998. Modeling ozone laminae in ground-based Arctic wintertime observations using trajectory calculations and satellite data. J. Geophys. Res. 103, 5797-5814.
    • Mariotti, A., Moustaoui, M., Legras, B. and Teitelbaum, H. 1997. Comparison between vertical ozone soundings and reconstructed potential vorticity maps by contour advection and surgery. J. Geophys. Res. 102, 6131-6142.
    • Marti, J. and Mauersberger, K. 1993. Laboratory simulations of PSC particule formation. Geophys. Res. L ett. 20, 359-362.
    • Mastenbrook, H. J. 1968. Water vapor distribution in the stratosphere and high troposphere. J. Atmos. Sci. 25, 299-311.
    • McIntyre, M. E. and Palmer, T. N. 1983. Breaking planetary waves in the stratosphere. Nature 305, 593-600.
    • McIntyre, M. E. and Palmer, T. N. 1984. The ''surf zone'' in the stratosphere. J. Atmos. T err. Phys. 46, 825-849.
    • McIntyre, M. E. 1989. On the Antarctic ozone hole. J. Atmos. T err. Phys. 51, 29-43.
    • McIntyre, M. E. 1995. The stratospheric polar vortex and sub-vortex: fluid dynamics and mid-latitude ozone loss. Phil. T rans. R. Soc. L ondon A352, 227-240.
    • Mote, P. W., Rosenlof, K. H., McIntyre, M. E., Carr, E. S., Gille, J. C., Holton, J. R., Kinnersley, J. S., Pumphrey, H. C., Russel III, J. M. and Waters, J. W. 1996. The imprint of tropical tropopause temperatures on stratospheric water vapor. J. Geophys. Res. 101, 3989-4006.
    • Nash, E. R., Newman, P. A., Rosenfeld, J. E. and Schoeberl, M. R. 1996. An objective determination of the polar vortex using Ertel's potential vorticity. J. Geophys. Res. 101, 9471-9478.
    • Naujokat, B. and Pawson, S. 1996. The cold stratospheric winters 1994/1995 and 1995/1996. Geophys. Res. L ett. 23, 3703-3706.
    • Newman, P. A., Lait, L. R., Scoeberl, M. R., Seablom, M., Coy, L., Rood, R., Swinbank, R., ProYtt, M., Loewenstien, M., Podolske, J. R., Elkins, J. W., Webster, C. R., May, R. D., Fahey, D. W., Dutton, G. S. and Chan, K. R. 1996. J. Geophys. Res. 101, 12,879-12,891.
    • Orsolini, Y. J., Hansen, G., Hoppe, U. P., Manney, G. L. and Fricke, K. H. 1997. J. Geophys. Res. 123, 785-800.
    • Orsolini, Y. J., Manney, G. I., Engel, A., Ovarlez, J., Claud, C. and Coy, L. 1998. Layering in stratospheric profiles of long-lived trace species: balloon-borne observations and modelling. J. Geophys. Res. 103, 5815-5825.
    • Ovarlez, J., Brioit, B., Capus J. and Ovarlez, H. 1987. Developpement et essais en vol ballon d'un hygrometre a point de rose´e pour sondage de l'atmosphe`re. Bull. Bur. Natl. Metrologie 69, 9-14.
    • Pawson, S. and Kr u¨ger, K., Swinbank, R., Balley, M. and O'Neill, A. 1999. Intercomparison of two stratospheric analyses: temperatures relevant to polar stratospheric cloud formation. J. Geophys. Res. 104, 2041-2050.
    • Pawson, S. and Naujokat, B. 1999. The cold winters of the middle 1990s in the northern lower stratosphere. J. Geophys. Res. 104, 14,209-14,222.
    • ProYtt, M. H., Powell, J. A., Tuck, A. F., Fahey, D. W., Kelly, K. K., Krueger, A. J., Schoeberl, M. R., Gary, B. L., Margitan, J. J., Chan, K. R., Loewenstein, M. and Podolske, J. R. 1989. A chemical definition of the boundary of the Antarctic ozone hole. J. Geophys. Res. 94, 11,437-11,448.
    • Pyle, J. A. 1995. Ozone loss in middle latitudes and the role of the Arctic polar vortex. Phil. T rans. R. Soc. L ondon A352, 241-245.
    • Reid, S., Vaughan, G. and Kyro, E. 1993. Occurrence of ozone laminae near the boundary of the stratospheric polar vortex. J. Geophys. Res. 98, 8883-8890.
    • Rummukainen, M., Knudsen, B. and Von der Gathen, P. 1994. Dynamical diagnostics of the edges of the polar vortices. Ann. Geophys. 12, 1114-1118.
    • Teitelbaum, H., Moustaoui, M., Ovarlez, J. and Kelder, H. 1996. The role of atmospheric waves in the laminated structure of ozone profiles at high latitudes. T ellus 48A, 442-455.
    • Teitelbaum, H. and Sadourny, R. 1998. The role of planetary waves in the formation of polar stratospheric clouds. T ellus 50A, 302-312.
    • Teitelbaum, H., Moustaoui, M., Van Velthoven, P. F. J. and Kelder, H. 1988. Decrease of total ozone at low latitudes in the southern hemisphere by a combination of linear and nonlinear processes. Q. J. R. Meteorol. Soc. 124, 2625-2644.
    • Toon, O. B., Turco, R. P., Jordan, J., Goodman, J. and Ferry, G. V. 1989. Physical processes in polar stratospheric clouds. J. Geophys. Res. 94, 11,359-11,380.
    • Trepte, C. R. and Hitchman, M. H. 1992. Tropical stratospheric circulation deduced from satellite aerosol data. Nature 355, 636-628.
    • Trounday, B., Perthuis, L., Strebelle, S., Farrara, J. D. and Mechoso, C. R. 1995. Dispersion properties of the flow in the southern stratosphere during winter and spring. J. Geophys. Res. 100, 13,901-13,917.
    • Turco, R. P., Toon, O. B. and Hamil, P. 1989. Heterogeneous physico-chemistry of the polar ozone hole. J. Geophys. Res. 94, 16,493-16,510.
    • Vaughan, G. and Timmis, C. 1998. Transport of neartropopause air into the lower midlatitude stratosphere. Q. J. R. Meteorol. Soc. 124, 1559-1578.
    • Vo¨mel, H., Rummukainen, M., Kivi, R., Karhu, J., Turunen, T., Kyro, E., Rosen, J., Kjome, N. and Oltmans, S. 1997. Dehydration and sedimentation of ice particles in the Arctic stratospheric vortex. Geophys. Res. L ett. 24, 795-798.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from