Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Heintzenberg, Jost; Birmili, Wolfram; Wiedensohler, Alfred; Nowak, Andreas; Tuch, Thomas (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Submicrometre dry number size distributions from four marine and one continental aerosol experiment were evaluatedjointly in the present study. In the marine experiments only data with back trajectories of at least 120 h without landcontact were used to minimize continental contamination. Log-normal functions were fitted to the size distributions.Basic statistics of the marine aerosol indicate a closed character of the size distribution at the lower size limit as opposedto an open character for corresponding continental data. Together with the infrequent occurrences of marine particlesbelow20 nmthis finding supports hypotheses and model results suggesting lowprobabilities of homogeneous nucleationin the marine boundary layer. The variability of submicrometre marine number concentrations was parametrized witha bimodal log-normal function that quantifies the probability of finding different number concentrations about a givenmedian value. Together with a four-modal log-normal approximation of the submicrometre marine size distributionitself, this model allows a statistical representation of the marine aerosol that facilitates comparison of experiments andvalidation of aerosol models. Autocorrelation at the one fixed marine site with a minimum of interruptions in timesseriesrevealed a strong size dependency of persistence in particle number concentration with the shortest persistenceat the smallest sizes. Interestingly, in the marine aerosol (at Cape Grim) persistence exhibits a size dependency thatlargely matches the modes in dg0, i.e. near the most frequent geometric mean diameters number concentrations aremost persistent. Over the continent, persistence of particle numbers is strongly constrained by diurnal meteorologicalprocesses and aerosol dynamics. Thus, no strong modal structure appears in the size-dependent persistence at Melpitz.As with the aerosol variability, marine aerosol processes in models of aerosol dynamics can be tested with these findings.DOI: 10.1111/j.1600-0889.2004.00115.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Anderson, T., Charlson, R., Winker, D., Ogren, J. and Holmen, K. 2003. Mesoscale variations of tropospheric aerosols. J. Atmos. Sci. 60, 119- 136.
    • Bates, T. S., Coffman, D. J., Covert, D. S. and Quinn, P. K. 2002. Regional marine boundary layer aerosol size distributions in the Indian, Atlantic, and Pacific Oceans: a comparison of INDOEX measurements with ACE-1, ACE-2, and Aerosols99. J. Geophys. Res. 107(D19), doi:10.1029/2001/JD001174.
    • Bates, T. S., Huebert, B. J., Gras, J. L., Griffiths, F. B. and Durkee, P. A. 1998a. International Global Atmospheric Chemistry (IGAC) project's first aerosol experiment (ACE 1): overview. J. Geophys. Res. 103(D13), 16 297-16 318.
    • Bates, T. S., Kapustin, V. N., Quinn, P. K., Covert, D. S., Coffman, D. J. et al. 1998b. Processes controlling the distribution of aerosol particles in the lower marine boundary layer during the first Aerosol Characterization Experiment (ACE 1). J. Geophys. Res. 103(D13), 16 369-16 383.
    • Bates, T. S., Quinn, P. K., Covert, D. S., Coffman, D. J., Johnson, J. E. et al. 2000. Aerosol physical properties and processes in the lower marine boundary layer: a comparison of shipboard sub-micron data from ACE-1 and ACE-2. Tellus 52B, 258-272.
    • Benkovitz, C. M., Berkowitz, C. M., Easter, R. C., Nemesure, S., Wagener, R. et al. 1994. Sulfate over the North Atlantic and adjacent continental regions: evaluation for October and November, 1986 using a three-dimensional model driven by observation-derived meteorology. J. Geophys. Res. 99(D10), 20 725-20 756.
    • Benkovitz, C. M. and Schwartz, S. E. 1997. Evaluation of modeled sulfate and SO2 over North America and Europe for four seasonal months in 1986-1987. J. Geophys. Res. 102(D21), 25 305-25 338.
    • Birmili, W. 2001. A moment-preserving parameterization of wide particle size distributions. J. Aerosol Sci. 32, S191-S192.
    • Birmili, W. and Wiedensohler, A. 1997. The design of a twin-differential mobility particle sizer for a wide size range and great operational stability. J. Aerosol Sci. 28(S1), S145-S146.
    • Birmili, W. and Wiedensohler, A. 2000. New particle formation in the continental boundary layer: meteorological and gas phase parameter influence. Geophys. Res. Lett. 27(20), 3325-3328.
    • Birmili, W., Wiedensohler, A., Heintzenberg, J. and Lehmann, K. 2001. Atmospheric particle number size distribution in Central Europe: statistical relations to air masses and meteorology. J. Geophys. Res. 106(D23), 32 005-32 018.
    • Charlson, R. J. 2000. Extending atmospheric aerosol measurements to the global scale. In: Topics in Atmospheric and Interstellar Physics and Chemistry (ed.C. Boutron). Les E´ ditions de Physique, Les Ulis, France, pp. 67-81.
    • Clarke, A. D., Li, Z. and Litchy, M. 1996. Aerosol dynamics in the equatorial Pacific Marine boundary layer: microphysics, diurnal cycles and entrainment. Geophys. Res. Lett. 23(7), 733-736.
    • Comtois, P. 2000. The gamma distribution as the true aerobiological probability density function (PDF). Aerobiologica 16(2), 171-176.
    • Covert, D. S., Gras, J. L., Wiedensohler, A. and Stratmann, F. 1998. Comparison of directly measured CCN with CCN modeled from the number-size distribution in the marine boundary layer during ACE 1 at Cape Grim, Tasmania. J. Geophys. Res. 103(D13), 16 597-16 608.
    • Covert, D. S., Wiedensohler, A., Aalto, P., Heintzenberg, J., McMurry, P. H. et al. 1996. Aerosol number size distributions from 3 to 500 nm diameter in the arctic marine boundary layer during summer and autumn. Tellus 48B, 197-212.
    • Heintzenberg, J., Covert, D. S. and Van Dingenen, R. 2000. Size distribution and chemical composition of marine aerosols: a compilation and review. Tellus 52B(4), 1104-1122.
    • Hermann, M., Heintzenberg, J., Wiedensohler, A., Brenninkmeijer, C. A. M., Heinrich, G. et al. 2003. Meridional distributions of aerosol particle number concentrations in the upper troposphere and lower stratosphere obtained by CARIBIC flights. J. Geophys. Res. 108(D3), doi:10.1029/2001JD0010077.
    • Jacobson, M. Z. 2001. Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols. J. Geophys. Res. 106(D2), 1551-1568.
    • Kreisberg, N. M., Stolzenburg, M. R., Hering, S. V., Dick, W. D. and McMurry, P. H. 2001. A new method for measuring the dependence of particle size distribution on relative humidity, with application to the Southeastern Aerosol and Visibility Study. J. Geophys. Res. 106(D14), 14 935-14 950.
    • Kulmala, M., Vehkama¨kia, H., Peta¨ja¨, T., Maso, M. D., Lauri, A. et al. 2004. Formation and growth rates of ultrafine atmospheric particles: a review of observations. J. Aerosol Sci. 35, 143-176.
    • Langner, J., Bates, T. S., Charlson, R. J., Clarke, A. D., Durkee, P. A. et al. 1993. The global atmospheric sulfur cycle: an evaluation of model predictions and observations. Report CM-81, Stockholm University.
    • Leck, C. and Bigg, E. K. 1999. Aerosol production over remote marine areas-a new route. Geophys. Res. Lett. 23, 3577-3581.
    • Leinert, S. 2002. Hygroscopicity of Micrometer-sized Aerosol Particlesa New Measurement Technique. PhD Thesis, University of Leipzig.
    • Ma¨kela¨, J. M., Koponen, I. K., Aalto, P. and Kulmala, M. 2000. One-year data of submicron size modes of tropospheric background aerosol in southern Finland. J. Aerosol Sci. 31(5), 595-611.
    • Ott, W. R. 1990. A physical explanation of the lognormality of pollutant concentrations. J. Air Waste Manage. Assoc. 40, 1378-1383.
    • Raes, F. 1995. Entrainment of free tropospheric aerosols as a regulating mechanism for cloud condensation nuclei in the remote marine boundary layer. J. Geophys. Res. 100(D2), 2893-2903.
    • Raes, F., Bates, T., Vogelenzang, D., van Liedekerke, M. and Verver, G. 2000. The second aerosol characterization experiment (ACE-2): general overview and main results. Tellus 52B(2), 111-125.
    • Rasch, P. J., Barth, M. C. and Kiehl, J. T. 2000. A description of the global sulfur cycle and its controlling processes in the NCAR CCM3. J. Geophys. Res. 105(D1), 1367-1385.
    • Russell, P. B. and Heintzenberg, J. 2000. An overview of the ACE 2 Clear Sky Column Closure experiment (CLEARCOLUMN). Tellus 52B, 463-483.
    • Shaw, G. E., Benner, R. L., Cantrell, W. and Clarke, A. D. 1998. On the regulation of climate: a sulfate particle feedback loop involving deep convection. Clim. Change 39, 23-33.
    • Tully, M. and Downey, A. 2003. Back Trajectories to Cape Grim: Investigating Sources of Error, Baseline 1999-2000, Bureau of Meteorology and CSIRO Atmospheric Research, Melbourne, pp. 8-12.
    • Tunved, P., Hansson, H.-C., Kulmala, M., Aalto, P., Viisanen, Y. et al. 2003. One year boundary layer aerosol size distribution data from five Nordic background stations. Atmos. Chem. Phys. 3, 2183-2205.
    • Walter, H. 1973. Coagulation and size distribution of condensation aerosols. J. Aerosol Sci. 4, 1-15.
    • Wang, J., McNeill, V. F., Collins, D. R. and Flagan, R. C. 2002. Fast mixing condensation nucleus counter: application to rapid scanning differential mobility analyzer measurements. Aerosol Sci. Technol. 36(6), 678-689.
    • Wehner, B. and Wiedensohler, A. 2002. Long term measurements of submicrometer urban aerosols: statistical analysis for correlations with meteorological conditions and trace gases. Atmos. Chem. Phys. 3, 867-879.
    • Wilson, J., Cuvelier, C. and Raes, F. 2001. A modeling study of global mixed aerosol fields. J. Geophys. Res. 106, 34 081-34 108.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from