LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Myhre, Gunnar; Stordal, Frode; Restad, Knut; Isaksen, Ivar S. A. (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects:
The direct radiative forcings due to tropospheric sulfate and fossil fuel soot aerosols are calculated. The change in the atmospheric sulfate since preindustrial time is taken from a recent three-dimensional chemistry transport model calculation. A multistream radiative transfer code and observed atmospheric input data is used. The direct radiative forcing due to sulfate is calculated to – 0.32 W/m2. Our results for global and annual mean radiative forcing have been compared with results from other model studies.We have assumed a linear relationship between the concentration of fossil fuel soot and sulfate aerosols. The resulting radiative forcing due to soot particles is 0.16 W/m2. Two types of mixtures of sulfate and soot are further assumed. The calculated single scattering albedo is compared to observations.DOI: 10.1034/j.1600-0889.1998.t01-4-00005.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Ackerman, T. P. and O. B. Toon, 1981. Absorption of visible radiation in atmosphere containing mixtures of absorbing and nonabsorbing particles. Appl. Opt. 20, 3661-3668.
    • Bates, T. S., B. K. Lamb, A. Guenther, J. Dignon and R. E. Stoiber, 1992. Sulfur emissions to the atmosphere from natural sources. J. Atmos. Chem. 14, 315-357.
    • Benkovitz, C. M., M. T. Scholtz, J. Pacyna, L. Tarrason, J. Dignon, E. C. Voldner, P. A. Spiro, J. A. Logan and T. E. Graedel, 1996. Global gridded inventories of anthropogenic emissions of sulfur and nitrogen. J. Geophys. Res. 101, 29,239-29,253.
    • Berntsen, T. K. and I. S. A. Isaksen, 1997. A global threedimensional chemical transport model for the troposphere, 1, Model description and CO2 and ozone results. J. Geophys. Res. 102, 21,239-21,280.
    • Berntsen, T. K., I. S. A. Isaksen, G. Myhre, J. S. Fuglestvedt, F. Stordal, T. Alsvik Larsen, R. S. Freckleton and K. P. Shine, 1997. EVects of anthropogenic emissions on tropospheric ozone and its radiative forcing. J. Geophys. Res. 102, 28,101-28,126.
    • Boucher, O. and T. L. Anderson, 1995. General circulation model assessment of the sensitivity of direct climate forcing by anthropogenic sulfate aerosols to aerosol size and chemistry. J. Geophys. Res. 100, 26,117-26,134.
    • Charlson, R. J., J. Langner, H. Rodhe, C. B. Leovy and S. G. Warren, 1991. Perturbation of the northern hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols. T ellus 43AB, 152-163.
    • Chuang, C. C., J. E. Penner, K. E. Taylor, A. S. Grossman and J. J. Walton, 1997. An assessment of the radiative eVects of anthropogenic sulfate. J. Geophys. Res. 102, 3761-3778.
    • Chylek, P. and J. Wong, 1995. EVect of absorbing aerosols on global radiation budget. Geophys. Res. L ett. 22, 929-931.
    • Coakley, J, A. Jr., R. D. Cess and F. B. Yurevich, 1983. The eVect of tropospheric aerosols on the earth's radiation budget: a parameterization for climate models. J. Atmos. Sci. 40, 116-138.
    • Cooke, W. F. and J. J. N. Wilson, 1996. A global black carbon model. J. Geophys. Res. 101, 19,395-19,409.
    • Feichter, J., E. Kjellstrom, H. Rodhe, F. Dentener, J. Lelieveld and G.-J. Roelofs, 1996. Simulation of the tropospheric sulfur cycle in a global climate model. Atmos. Environ. 30 1693-1707.
    • Feichter, J., U. Lohmann and I. Schult, 1997. The atmospheric sulfur cycle in ECHAM-4 and its impact on the short-wave radiation. Climate Dynamics 13, 235-246.
    • Fitzgerald, J. W. 1975. Approximation formulas for the equilibrium size of an aerosol particle as a function of its dry size and composition and the ambient relative humidity. J. Appl. Meteor. 14, 1044-1049.
    • Frohlich, C. and J. London (eds.) 1986. Revised instruction manual on radiation instruments and measurements. WCRP Pub. Series no. 7., WMO/TD. no. 149, 140 pp.
    • Graf, H.-F., J. Feichter and B. Langmann, 1997. Volcanic sulfur emissions: estimates of source strength and its contribution to the global sulfate distribution. J. Geophys. Res. 102, 10,727-10,738.
    • Hansen, J., M. Sato and R. Ruedy, 1997. Radiative forcing and climate response. J. Geophys. Res. 102, 6831-6864.
    • Haywood, J. M. and K. P. Shine, 1995. The eVect of anthropogenic sulfate and soot aerosol on the clear sky planetary radiation budget. J. Geophys. Res. 22, 603-606.
    • Haywood, J. M. and K. P. Shine, 1997. Multi-spectral calculations of the direct radiative forcing of tropospheric sulphate and soot aerosols using a column model. Q. J. R. Meteorol. Soc. 123, 1907-1930.
    • Haywood, J. M., D. L. Roberts, A. Slingo, J. M. Edwards and K. P. Shine, 1997a. General circulation model calculations of the direct radiative forcing by anthropogenic sulfate and fossil-fuel soot aerosol. J. Clim. 10, 1562-1577.
    • Haywood, J. M., V. Ramaswamy and L. J. Donner, 1997b. A limited-area-model case study of the eVects of sub-grid scale variations in relative humidity and cloud upon the direct radiative forcing of sulfate aerosol. Geophys. Res. L ett. 24, 143-146.
    • Heintzenberg, J., R. J. Charlson, A. D. Clarke, C. Liousse, V. Ramaswamy, K. P. Shine, M. Wendisch and G. Helas, 1997. Measurements and modelling of aerosol single-scattering albedo: progress, problems and prospects. Beitr. Phys. Atmosph. 70, 249-263.
    • Intergovernmental Panel on Climate Change (IPCC) 1990. Climate change: the IPCC scientific assessment, edited by J. T. Houghton, G. J. Jenkins and J. J. Ephraums, 1990. Cambridge University Press, Cambridge, UK.
    • Intergovernmental Panel on Climate Change (IPCC) 1995. Climate change 1995: the science of climate change, edited by J. T. Houghton, L. G. Meira Filho, B. A. Callander, N. Harris, A. Kattenberg and K. Maskell. Cambridge University Press, Cambridge, UK.
    • Kiehl, J. T. and B. P. Briegleb, 1993. The relative roles of sulfate aerosols and greenhouse gases in climate forcing. Science 260, 311-314.
    • Kiehl, J. T. and H. Rodhe, 1995. Modeling geographical and seasonal forcing due to aerosols. In: Aerosol forcing of climate, R. J. Charlson and J. Heintzenberg (eds). John Wiley, Chichester, 281-296.
    • Langner, J. and H. Rodhe, 1991. A global three-dimensional model of the tropospheric sulfur cycle. J. Atmos. Chem. 13, 225-263.
    • Lacis, A. A. and M. I. Mishchenko, 1995. Climate forcing, climate sensitivity, and climate response: a radiative modeling perspective on atmospheric aerosols. In: Aerosol forcing of climate, R. J. Charlson and J. Heintzenberg (eds). John Wiley, Chichester, 11-42.
    • Liang, X,-Z. and W.-C. Wang, 1995. A GCM study of the climatic eVect of 1979-1992 ozone trend. In: Atmospheric ozone as a climate gas, edited by W.-C. Wang and I. S. A. Isaksen. NATO ASI Ser., Springer-Verlag, New York.
    • Liousse, C., J. E. Penner, C. Chuang, J. J. Walton, H. Eddleman and H. Cachier, 1996. A global threedimensional model study of carbonaceous aerosols. J. Geophys. Res. 101, 19,411-19,432.
    • Myhre, G. and F. Stordal, 1997. Role of spatial and temporal variations in the computation of radiative forcing and GWP. J. Geophys. Res. 102, 11,181-11,200.
    • Nemesure, S., R. Wagener and S. E. Schwartz, 1995. Direct short-wave forcing of climate by anthropogenic sulfate aerosols: sensitivity to particle size, composition and relative humidity. J. Geophys. Res. 100, 26,105-26,116.
    • Penner, J. E., C. S. Atherton and T. E. Graedel, 1994. Global emissions and models of photochemically active compounds. In: Global atmospheric-biospheric chemistry, edited by R. G. Prinn, pp. 223-247. Plenum, New York.
    • Pham M., J.-F. M u¨ller, G. P. Brasseur, C. Granier and G. Me´gie, 1995. A three-dimensional study of the tropospheric sulfur cycle. J. Geophys. Res. 100, 26,061-26,092.
    • Pilinis, C., S. N. Pandis and J. H. Seinfeld, 1995. Sensitivity of direct climate forcing by atmospheric aerosols to aerosol size and composition. J. Geophys. Res. 100, 18,739-18,754.
    • Ramaswamy, V. and C-T. Chen, 1997. Climate forcingresponse relationships for greenhouse and short-wave radiative perturbations. Geophys. Res. L ett. 24, 667-670.
    • Restad, K., I. S. A. Isaksen and T. K. Berntsen, 1998. Global distribution of sulfate particles in the troposphere: Study with a 3-dimensional model. Atmos. Environ., in press.
    • Rodhe, H. and I. S. A. Isaksen, 1980. Global distribution of sulfur compounds in the troposphere estimated in a height/latitude transport model. J. Geophys. Res. 85, 7401-7409.
    • Rossow, W. B. and R. A. SchiVer, 1991. ISCCP cloud data products. Bull. Am. Meteorol. Soc. 72, 2-20.
    • Rothman, L. S. et al. 1992. The HITRAN molecular database: Editions of 1991 and 1992. J. Quant. Spectrosc. Radiat. T ransfer 48, 469-507.
    • Stamnes, K., S.-C. Tsay, W. Wiscombe and K. Jayaweera, 1988. A numerically stable algorithm for discreteordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt. 27, 2502-2509.
    • Stoiber, R. E., S. N. Williams and B. Huebert, 1987. Annual contribution of sulfur dioxide to the atmosphere by volcanoes. J. Volcanol. Geotherm. 33, 1-8.
    • Taylor, K. E. and J. E. Penner, 1994. Response of the climate system to atmospheric aerosols and greenhouse gases. Nature 369, 734-737.
    • Toon, O. B., J. B. Pollack and B. N. Khare, 1976. The optical constants of several atmospheric aerosol species, ammonium sulphate, aluminium oxide, and sodium chloride. J. Geophys. Res. 81, 5733-5748.
    • WCP, 1986. A preliminary cloudless standard atmosphere for radiation computation. World Climate Programme, Rep. WCP-112.
    • World Meteorological Organization (WMO), 1985. Global ozone research and monitoring project, rep. 16: Atmospheric Ozone.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from