LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Roelofs, Geert-Jan; Lelieveld, Jos (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects:
Cross-tropopause transport of O3 is a significant factor in the tropospheric budget and distribution of O3. Nevertheless, the distribution in the troposphere of O3 that originates from the stratosphere is uncertain. We study this with a chemistry — general circulation model with relatively high spatial and temporal resolution. The model simulates background tropospheric CH4-CO-NOx-HOx photochemistry, and includes a tracer for stratospheric O3. Since this tracer is not photochemically produced in the troposphere but only destroyed, comparing its budget and distribution with that of total tropospheric O3 yields an estimate of the contribution of the stratospheric O3 source in the troposphere. Model results suggest that transport from the stratosphere and net photochemical formation in the troposphere, considering present-day emissions, are of comparable magnitude. The model predicts efficient transport of upper tropospheric O3-rich air to the surface by large-scale subsidence in the subtropics and by synoptic disturbances in the NH middle and high latitudes. O3 from the stratosphere contributes significantly to surface O3 in winter and spring when the photochemical lifetime of O3 is relatively long. In summer and in the tropics, little O3 from the stratosphere reaches the surface due to strong photochemical destruction, so that surface O3 is largely determined by photochemical production. Photochemically produced O3 maximizes in the free troposphere where the O3surface warming efficiency is higher compared to the boundary layer.DOI: 10.1034/j.1600-0889.49.issue1.3.x
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from