Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Torbern Tagesson; Mikhail Mastepanov; Meelis Mölder; Mikkel P. Tamstorf; Lars Eklundh; Benjamin Smith; Charlotte Sigsgaard; Magnus Lund; Anna Ekberg; Julie M. Falk; Thomas Friborg; Torben R. Christensen; Lena Ström (2013)
Publisher: Taylor & Francis Group
Journal: Tellus: Series B
Languages: English
Types: Article
Subjects: Meteorology. Climatology, QC851-999, Remote sensing, Biogeosciences, Arctic, methane, NDWI; Methane; Land-atmosphere interactions; high-Arctic, NDWI, Landsat, climate change
Methane (CH4) fluxes 1997–2010 were studied by combining remotely sensed normalised difference water index (NDWI) with in situ CH4 fluxes from Rylekærene, a high-Arctic wet tundra ecosystem in the Zackenberg valley, north-eastern Greenland. In situ CH4 fluxes were measured using the closed-chamber technique. Regression models between in situ CH4 fluxes and environmental variables [soil temperature (Tsoil), water table depth (WtD) and active layer (AL) thickness] were established for different temporal and spatial scales. The relationship between in situ WtD and remotely sensed NDWI was also studied. The regression models were combined and evaluated against in situ CH4 fluxes. The models including NDWI as the input data performed on average slightly better [root mean square error (RMSE) =1.56] than the models without NDWI (RMSE=1.67), and they were better in reproducing CH4 flux variability. The CH4 flux model that performed the best included exponential relationships against temporal variation in Tsoil and AL, an exponential relationship against spatial variation in WtD and a linear relationship between WtD and remotely sensed NDWI (RMSE=1.50). There were no trends in modelled CH4 flux budgets between 1997 and 2010. Hence, during this period there were no trends in the soil temperature at 10 cm depth and NDWI.Keywords: NDWI, methane, Arctic, Landsat, climate change(Published: 14 May 2013)Citation: Tellus B 2013, 65, 19722, http://dx.doi.org/10.3402/tellusb.v65i0.19722
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • ACIA. 2005. Arctic Climate Impact Assessment. Cambridge University Press, New York.
    • Boles, S. H., Xiao, X., Liu, J., Zhang, Q., Munkhtuya, S. and coauthors. 2004. Land cover characterization of temperate East Asia using multi-temporal VEGETATION sensor data. Remote. Sens. Environ. 90, 477 489.
    • Bubier, J. L. and Moore, T. R. 1994. An ecological perspective on methane emissions from northern wetlands. Trends. Ecol. Evol. 9, 460 464.
    • Bubier, J., Moore, T., Savage, K. and Crill, P. 2005. A comparison of methane flux in a boreal landscape between a dry and a wet year. Glob. Biogeochem. Cycles. 19, GB1023.
    • Buus-Hinkler, J., Hansen, B. U., Tamstorf, M. P. and Pedersen, S. B. 2006. Snow-vegetation relations in a high Arctic ecosystem: inter-annual variability inferred from new monitoring and modeling concepts. Remote. Sens. Environ. 105, 237 247.
    • Christensen, T. R., Johansson, T., A˚kerman, H. J., Mastepanov, M., Malmer, N. and co-authors. 2004. Thawing sub-arctic permafrost: effects on vegetation and methane emissions. Geophys. Res. Lett. 31, L04501.
    • Cronk, J. K. and Fennessy, M. S. 2001. Wetland Plants: Biology and Ecology. CRC Press, Boca Raton, FL.
    • de Alwis, D. A., Easton, Z. M., Dahlke, H. E., Philpot, W. D. and Steenhuis, T. S. 2007. Unsupervised classification of saturated areas using a time series of remotely sensed images. Hydrol. Earth. Syst. Sci. 11, 1609 1620.
    • Delbart, N., Kergoat, L., Le Toan, T., Lhermitte, J. and Picard, G. 2005. Determination of phenological dates in boreal regions using normalized difference water index. Remote. Sens. Environ. 97, 26 38.
    • Dunfield, P., knowles, R., Dumont, R. and Moore, T. R. 1993. Methane production and consumption in temperate and subarctic peat soils: response to temperature and pH. Soil. Biol. Biochem. 25, 321 326.
    • Elberling, B., Tamstorf, M. P., Michelsen, A., Arndal, M. F., Sigsgaard, C. and co-authors. 2008. Soil and plant communitycharacteristics and dynamics at Zackenberg. In: Advances in Ecological Research- High Arctic Ecosystem Dynamics in a Changing Climate (eds. H. Meltofte, T. R. Christensen, B. Elberling, M. C. Forchhammer, and M. Rasch). Academic Press, Amsterdam, pp. 223 248.
    • Fensholt, R. and Sandholt, I. 2003. Derivation of a shortwave infrared water stress index from MODIS near- and shortwave infrared data in a semiarid environment. Remote. Sens. Environ. 87, 111 121.
    • Friborg, T., Christensen, T. R., Hansen, B. U., Nordstroem, C. and Soegaard, H. 2000. Trace gas exchange in a high-arctic valley 2. Landscape CH4 fluxes measured and modeled using eddy correlation data. Glob. Biogeochem. Cycles. 14, 715 723.
    • Gao, B.-C. 1996. NDWI A normalized difference water index for remote sensing of vegetation liquid water from space. Remote. Sens. Environ. 58, 257 266.
    • Goswami, S., Gamon, J. A. and Tweedie, C. E. 2011. Surface hydrology of an arctic ecosystem: multiscale analysis of a flooding and draining experiment using spectral reflectance. J. Geophys. Res. 116, G00107:1 14. DOI: 10.1029/2010JG001346.
    • Hansen, B. U., Sigsgaard, C., Rasmussen, L., Cappelen, J., Hinkler, J. and co-authors. 2008. Present-day climate at Zackenberg. In: Advances in Ecological Research- High-Arctic Ecosystem Dynamics in a Changing Climate (eds. H. Meltofte, T. R. Christensen, B. Elberling, M. C. Forchhammer, and M. Rasch). Academic Press, Amsterdam, pp. 111 149.
    • Hargreaves, K. J. and Fowler, D. 1998. Quantifying the effects of water table and soil temperature on the emission of methane from peat wetland at the field scale. Atmos. Environ. 32, 3275 3282.
    • Hargreaves, K. J., Fowler, D., Pitcairn, C. E. R. and Aurela, M. 2001. Annual methane emission from Finnish mires estimated from eddy covariance campaign measurements. Theor. Appl. Climatol. 70, 203 213.
    • Hasholt, B., Mernild, S. H. and Sigsgaard, C. 2008. Hydrology and transport of sediment and solutes at Zackenberg. In: Advances in Ecological Research- High-Arctic Ecosystem Dynamics in a Changing Climate (eds. H. Meltofte, T. R. Christensen, B. Elberling, M. C. Forchhammer, and M. Rasch). Academic Press, Amsterdam, pp. 197 222.
    • Horst, T. W. 1999. The footprint for estimation of atmospheresurface exchange fluxes by profile techniques. Bound. Lay. Meteorol. 90, 171 188.
    • Hsieh, C. I., Katul, G. and Chi, T. W. 2000. An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows. Adv. Water. Res. 23, 765 772.
    • Huttunen, J. T., Nyka¨ nen, H., Turunen, J. and Martikainen, P. J. 2003. Methane emissions from natural peatlands in the northern boreal zone in Finland, Fennoscandia. Atmos. Environ. 37, 147 151.
    • IPCC. 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.
    • Jensen, L. M. and Rasch, M. 2011. Zackenberg Ecological Research Operations, 16th Annual Report, 2010. Danish Centre for Environment and Energy, A˚rhus, p. 114.
    • Joabsson, A. and Christensen, T. R. 2001. Methane emissions from wetlands and their relationship with vascular plants: an Arctic example. Glob. Chang. Biol. 7, 919 932.
    • Johansson, T., Malmer, N., Crill, P. M., Friborg, T., Akerman, J. H. and co-authors. 2006. Decadal vegetation changes in a northern peatland, greenhouse gas fluxes and net radiative forcing. Glob. Chang. Biol. 12, 2352 2369.
    • Leo, W. R. 1994. Techniques for Nuclear and Particle Physics Experiments. Springer Verlag, Berlin.
    • Lillesand, T. M., Kiefer, R. W. and Chipman, J. W. 2008. Remote Sensing and Image Interpretation. John Wiley, Hoboken, NJ.
    • Livingston, G. P. and Hutchinson, G. L. 1995. Enclosure-based measurement of trace gas exchange: applications and sources of error. In: Biogenic Trace Gases: Measuring Emissions from Soil and Water (eds. P. A. Matson and R. C. Harriss). Blackwell Sciences, Oxford, pp. 14 51.
    • Malmer, N., Johansson, T., Olsrud, M. and Christensen, T. R. 2005. Vegetation, climatic changes and net carbon sequestration in a North-Scandinavian subarctic mire over 30 years. Glob. Chang. Biol. 11, 1895 1909.
    • Mastepanov, M. 2010. Towards a Changed View on Greenhouse Gas Exchange in the Arctic- New Findings and Improved Techniques. PhD Thesis. Department of Physical Geography and Ecosystem Analysis, Lund University, Lund.
    • McGuire, A. D., Anderson, L. G., Christensen, T. R., Dallimore, S., Guo, L. and co-authors. 2009. Sensitivity of the carbon cycle in the Arctic to climate change. Ecol. Monogr. 79, 523 555.
    • Megonigal, J. P., Hines, M. E., Visscher, P. T., Heinrich, D. H. and Karl, K. T. 2007. Anaerobic metabolism: linkages to trace gases and aerobic processes. In: Biogeochemistry. (ed. W. H. Schlesinger). Pergamon, Oxford, pp. 317 424.
    • Meltofte, H. and Rasch, M. 2008. The study area at Zackenberg. In: Advances in Ecological Research- High Arctic Ecosystem Dynamics in a Changing Climate (eds. H. Meltofte, T. R. Christensen, B. Elberling, M. C. Forchhammer, and M. Rasch). Academic Press, Amsterdam, pp. 101 110.
    • Morrissey, L. A., Zobel, D. B. and Livingston, G. P. 1993. Significance of stomatal control on methane release from carexdominated wetlands. Chemosphere. 26, 339 355.
    • Mo¨ lder, M. and Kellner, E. 2002. Excess resistance of bog surfaces in central Sweden. Agr. Forest. Meteorol. 112, 23 30.
    • Oechel, W. C., Hastings, S. J., Vourlitris, G., Jenkins, M., Riechers, G. and co-authors. 1993. Recent change of Arctic tundra ecosystems from a net carbon dioxide sink to a source. Nature. 361, 520 523.
    • ORNL DAAC. 2010. Oak Ridge National Laboratory Distributed Active Archive Center. MODIS Subsetted Land Products, Collection 5. Oak Ridge, TN. Online at: http://daac.ornl.gov/ MODIS/modis.html.
    • Pelletier, L., Moore, T. R., Roulet, N. T., Garneau, M. and Beaulieu-Audy, V. 2007. Methane fluxes from three peatlands in the La Grande Riviere watershed, James Bay lowland, Canada. J. Geophys. Res. Biogeosci. 112, 12.
    • Richer, R. 2005. Atmospheric/Topographic Correction for Satellite Imagery (ATCOR-2/3 User Guide Version 6.1). DLR German Aerospace Center, Wessling Germany.
    • Rinne, J., Riutta, T., Pihlatie, M., Aurela, M., Haapanala, S. and co-authors. 2007. Annual cycle of methane emission from a boreal fen measured by the eddy covariance technique. Tellus. B. 59, 449 457.
    • Sachs, T., Wille, C., Boike, J. and Kutzbach, L. 2008. Environmental controls on ecosystem-scale CH4 emission from polygonal tundra in the Lena River Delta, Siberia. J. Geophys. Res. 113, G00A03.
    • Schlesinger, W. H. 1997. Biogeochemistry An Analysis of Global Change. 2nd ed. Academic Press, London.
    • Serreze, M. C., Walsh, J. E., Chapin, F. S., III, Osterkamp, T., Dyurgerov, M. and co-authors. 2000. Observational evidence of recent change in the northern high-latitude environment. Clim. Chang. 46, 159 207.
    • Smith, L. C., Macdonald, G. M., Velichko, A. A., Beilman, D. W., Borisova, O. K. and co-authors. 2004. Siberian peatlands: a net carbon sink and global methane source since the early Holocene. Science. 303, 353 356.
    • Stro¨ m, L., Tagesson, T., Mastepanov, M. and Christensen, T. R. 2012. Presence of Eriophorum scheuchzeri enhances substrate availability and methane emission in an Arctic wetland. Soil. Biol. Biochem. 45, 61 70.
    • Svensson, B. H., Christensen, T. R., Johansson, E. and O¨quist, M. 1999. Interdecadal changes in CO2 and CH4 fluxes of a subarctic mire: stordalen revisited after 20 years. Oikos. 85, 22 30.
    • Tagesson, T., Mastepanov, M., Tamstorf, M. P., Eklundh, L., Schubert, P. and co-authors. 2012a. High-resolution satellite data reveal an increase in peak growing season gross primary production in a high-Arctic wet tundra ecosystem 1992 2008. Int. J. Appl. Earth. Obs. Geoinf. 18, 407 416.
    • Tagesson, T., Mo¨ lder, M., Mastepanov, M., Sigsgaard, C., Tamstorf, M. P. and co-authors. 2012b. Land atmosphere exchange of methane from soil thawing to soil freezing in a high-Arctic wet tundra ecosystem. Glob. Chang. Biol. 18, 1928 1940.
    • Tamstorf, M., Illeris, L., Hansen, B. and Wisz, M. 2007. Spectral measures and mixed models as valuable tools for investigating controls on land surface phenology in high arctic Greenland. BMC. Ecol. 7, 9.
    • Tarnocai, C. 2006. The effect of climate change on carbon in Canadian peatlands. Glob. Planet. Chang. 53, 222 232.
    • Tarnocai, C., Canadell, J. G., Schuur, E. A. G., Kuhry, P., Mazhitova, G. and co-authors. 2009. Soil organic carbon pools in the northern circumpolar permafrost region. Glob. Biogeochem. Cycles. 23, GB2023.
    • Thompson, C. C., McGuire, A. D., Clein, J. S., Chapin, F. S. and Beringer, J. 2006. Net carbon exchange across the Arctic tundraboreal forest transition in Alaska 1981 2000. Mitig. Adapt. Strat. Glob. Chang. 11, 805 827.
    • Torn, M. S. and Chapin, F. 1993. Environmental and biotic controls over methane flux from Arctic tundra. Chemosphere. 26, 357 368.
    • Whiting, M. L., Li, L. and Ustin, S. L. 2004. Predicting water content using Gaussian model on soil spectra. Remote. Sens. Environ. 89, 535 552.
    • Wickland, K. P., Striegl, R. G., Neff, J. C. and Sachs, T. 2006. Effects of permafrost melting on CO2 and CH4 exchange of a poorly drained black spruce lowland. J. Geophys. Res. 111, G02011.
    • Wieringa, J. 1993. Representative roughness parameters for homogeneous terrain. Bound. Lay. Meteorol. 63, 323 363.
    • Wille, C., Kutzbach, L., Sachs, T., Wagner, D. and Pfeiffer, E.-M. 2008. Methane emission from Siberian Arctic polygonal tundra: eddy covariance measurements and modeling. Glob. Chang. Biol. 14, 1395 1408.
    • Wu, G., Ren, G., Wang, D., Shi, Z. and Warrington, D. 2013. Above- and below-ground response to soil water change in an alpine wetland ecosystem on the Qinghai-Tibetan Plateau, China. J. Hydrol. 476, 120 127.
    • Xiao, X., Hollinger, D., Aber, J., Goltz, M., Davidson, E. A. and co-authors. 2004. Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote. Sens. Environ. 89, 519 534.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • No similar publications.

Share - Bookmark

Cite this article