LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Nyeki, S.; Coulson, G.; Colbeck, I.; Eleftheriadis, K.; Baltensperger, U.; Beine, H. J. (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects:
Extensive aerosol and trace gas measurements were conducted at Ny-Ålesund (Svalbard) before and after Arctic sunrise in 2001 (NICE Dark and Light intensive campaigns) in order to study the possible role of aerosols in the renoxification mechanism. This study reports aerosol physical measurements over a continuous 3-month period. Arctic and sub-Arctic air masses dominated the measurement period and were characterized by low number (N∼ 275 and 590 cm−3 respectively) and surface area (S∼ 39 and 28 μm2 cm−3) concentrations (measured range d= 14–740 nm) except for two Arctic haze events with high concentrations in springtime (N∼ 1140 cm−3 and ∼ 125 μm2 cm−3). Excluding these events, aerosol volatility measurements indicated no significant variation in the volatile (∼0.40), semi-volatile (∼0.32) or refractory (∼0.28) volume fractions which are commonly attributed to H2SO4, (NH4)2SO4/NH4HSO4and soot/dust/sea-salt aerosol.DOI: 10.1111/j.1600-0889.2005.00122.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Aumont, B., Madronich, S., Ammann, M., Baltensperger, U. and Hauglustaine, D. 1999. On the NO2 + soot reaction in the atmosphere. J. Geophys. Res. 104, 1729-1736.
    • Beine, H. J., Engardt, M., Jaffe, D. A., Hov, Ø., Holme´n, K. et al. 1996. Measurements of NOx and aerosol particles at the Ny Ålesund Zeppelin mountain station on Svalbard: influence of regional and local pollution sources. Atmos. Environ. 30, 1067-1079.
    • Beine, H. J., Allegrini, I., Sparapani, R., Ianniello, A. and Valentini, F. 2001a. Three years of springtime trace gas and particle measurement at Ny-Ålesund, Svalbard. Atmos. Environ. 35, 3645-3658.
    • Beine, H. J., Argentini, S., Maurizi, A., Mastrantonio, G. and Viola, A. 2001b. The local wind field at Ny-Ålesund and the Zeppelin mountain at Svalbard. Meteorol. Atmos. Phys. 78, 107-113.
    • Beine, H. J., Domine´, F., Ianniello, A., Nardino, M., Allegrini, I. et al. 2003. Fluxes of nitrates between snow surfaces and the atmosphere in the European high Arctic. Atmos. Chem. Phys. 3, 335-346.
    • Burtscher, H., Baltensperger, U., Bukowiecki, N., Cohn, P., Hu¨glin, C. et al. 2001. Separation of volatile and non-volatile aerosol fractions by thermodesorption: instrumental development and applications. J. Aerosol Sci. 32, 427-442.
    • Cecinato, A., Mabilia, R. and Marino, F. 2000. Relevant organic compounds in ambient particulate matter collected at Svalbard Islands (Norway). Atmos. Environ. 34, 5061-5066.
    • Covert, D. S. and Heintzenberg, J. 1993. Size distributions and chemical properties of aerosol at Ny Ålesund, Svalbard. Atmos. Environ. 27A, 2989-2997.
    • Dibb, J. E., Arsenault, M., Peterson, M. C. and Honrath R. E. 2002. Fast nitrogen oxide photochemistry in Summit, Greenland snow. Atmos. Environ. 36, 2501-2511.
    • Draxler, R. R. and Hess, G. D. 1998. An overview of the HYSPLIT4 modelling system for trajectories, dispersion and deposition. Aust. Meterorol. Mag. 79, 295-308.
    • Hauglustaine, D. A., Ridley, B. A., Solomon, S., Hess, P. G. and Madronich, S. 1996. HNO3/NOx ratio in the remote troposphere during MLOPEX2: evidence for nitric acid reduction on carbonaceous aerosols? Geophys. Res. Lett. 23, 2609-2612.
    • Heintzenberg, J. and Leck, C. 1994. Seasonal variation of the atmospheric aerosol near the top of the marine boundary layer over Spitsbergen related to the Arctic sulphur cycle. Tellus 46B, 52-67.
    • Honrath, R. E., Peterson, M. C., Dziobak, M. P., Green, S. and Dibb, J. E. 2000. Release of NOx from sunlight-irradiated midlatitude snow. Geophys. Res. Lett. 27, 2237-2240.
    • Leck, C. and Bigg, E. K. 1999. Aerosol production over remote marine areas-a new route. Geophys. Res. Lett. 26, 3577, 3580.
    • Maenhaut, W., Cornille, P., Pacyna, J. M. and Vitols, V. 1989. Trace element composition and origin of the atmospheric aerosol in the Norwegian Arctic. Atmos. Environ. 23, 2551-2569.
    • Narukawa, M., Kawamura, K., Li, S.-M. and Bottenheim, J. W. 2002. Dicarboxylic acids in the Arctic aerosols and snowpacks collected during ALERT 2000. Atmos. Environ. 36, 2491-2499.
    • Nilsson, E. D. and Barr, S. 2001. Effects of synoptic patterns on atmospheric chemistry and aerosols during the Arctic Ocean Expedition 1996. J. Geophys. Res. 106, 32 069-32 086.
    • Nilsson, E. D., Paatero, J. and Boy, M. 2001. Effects of air masses and synoptic weather on aerosol formation in the continental boundary layer. Tellus 53B, 462-478.
    • Nyeki, S., Li, F., Weingartner, E., Streit, N., Colbeck, I., Ga¨ggeler, H. W. et al. 1998. The background aerosol size distribution in the free troposphere: an analysis of the annual cycle at a high-alpine site. J. Geophys. Res. 103, 31 749-31 761.
    • Paatero, J., Hatakka, J., Holme´n, K., Eneroth, K. and Viisanen, Y. 2003. Lead-210 concentration in the air at Mt. Zeppelin, Ny-Ålesund, Svalbard. Phys. Chem. Earth 28, 1175-1180.
    • Polissar, A. V., Hopke, P. K. and Harris, J. M. 2001. Source regions for atmospheric aerosol measured at Barrow, Alaska. Environ. Sci. Technol. 35, 4214-4226.
    • Sirois, A. and Barrie, L. A. 1999. Arctic lower tropospheric aerosol trends and composition at Alert, Canada: 1980-1995. J. Geophys. Res. 104, 11599-11618.
    • Smith, M. H. and O'Dowd, C. D. 1996. Observations of accumulation mode aerosol composition and soot carbon concentrations by means of a high-temperature volatility technique. J. Geophys. Res. 101, 19 583-19 591.
    • Staebler, R., Toom-Sauntry, D., Barrie, L., Langendo¨rfer, U., Lehrer, E. et al. 1999. Physical and chemical characteristics of aerosols at Spitsbergen in the spring of 1996. J. Geophys. Res. 104, 5515-5529.
    • Stro¨m, J., Umega˚rd, J., Tørseth, K., Tunved, P., Hanson, H.-C. et al. 2003. One year of particle size distribution and aerosol chemical composition measurements at the Zeppelin Station, Svalbard, March 2000- March 2001. Phys. Chem. Earth 28, 1181-1190.
    • Svendsen, H., Beszczynska-Møller, A., Hagen, J. O., Lefauconnier, B., Tverberg, V. et al. 2002. The physical environment of KongsfjordenKrossfjorden, an Arctic fjord system in Svalbard. Polar Res. 21, 133- 166.
    • Teinila¨, K., Hillamo, R., Kerminen, V.-M. and Beine, H. J. 2003. Aerosol chemistry during the NICE dark and light campaigns. Atmos. Environ. 37, 563-575.
    • Tunved, P., Hansson, H.-C., Kulmala, M., Aalto P., Viisanen, Y., Karlsson, H. et al. 2003. One year boundary layer aerosol size distribution data from five Nordic background stations. Atmos. Chem. Phys. 3, 2183-2205.
    • Vinogradova, A. A. 2000. Anthropogenic pollutants in the Russian Arctic atmosphere: sources and sinks in spring and summer. Atmos. Environ. 34, 5151-5160.
    • Wiedensohler, A., Covert, D. S., Swietlicki, E., Aalto, P., Heintzenberg, J. et al. 1996. Occurrence of an ultrafine particle mode less than 20 nm in diameter in the marine boundary layer during Arctic summer and autumn. Tellus 48B, 213-222.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article

Collected from