Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Van Dingenen, Rita; Virkkula, Aki O.; Raes, Frank; Bates, Timothy S.; Wiedensohler, Alfred (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
We propose an analytical expression for the relation between aerosol accumulation number and sub-micron volume over the marine boundary layer (MBL), based on a simple balance equation. By providing appropriate source and sink terms which account for entrainment, coagulation, in-cloud scavenging and condensational growth, the model is able to reproduce the observed ratio between MBL particles larger than 80 nm diameter (as a proxy for accumulation mode number) and submicron aerosol volume, from freshly polluted to background conditions. Entrainment and coagulation are essential in predicting the observed ratio. Budget and lifetime calculations show that, due to relatively low source rates of oceanic non-sea-salt-sulfate and sea-salt, the anthropogenic signature in aerosol volume remains significant even after 8 days of MBL transport.DOI: 10.1034/j.1600-0889.2000.00091.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Ackerman, A. S., Toon, O. B. and Hobbs, P. 1994. Reassessing the dependence of cloud condensation nucleus concentration on formation rate. Nature 367, 445-447.
    • Bates, T. S., Quinn, P. K., Covert, D. S., CoVman, D. J., Johnson, J. E. and Wiedensohler, A. 2000. Aerosol physical properties and controlling processes in the lower marine boundary layer: a comparison of submicron data from ACE1 and ACE2. T ellus 52B, 258-272.
    • Bretherton, C. S., Austin, P. and Siems, S. T. 1995. Cloudiness and marine boundary layer dynamics in the ASTEX Lagrangian experiments, II, cloudiness, drizzle, surface fluxes and etrainment. J. Atmos. Sci. 52, 5724-2753.
    • Fitzgerald, J. W., Marti, J. J., Hoppel, W. A., Frick, G. M. and Gelbard, F. 1998. A one-dimensional sectional model to simulate multicomponent aerosol dynamics in the marine boundary layer (2). Model application. J. Geophys. Res. 103, 16103-16117.
    • Global Precipitation Climatology Project combined dataset. 1999. http://www.dwd.de/research/gpcc.
    • Hegg, D. A. and Kaufman, Y. J. 1998. Measurements of the relationship between sub-micron aerosol number and volume concentration. J. Geophys. Res. 103, 5671-5678.
    • Hinds, W. C. 1982. Aerosol technology, Wiley, New York.
    • Hoell, C., O'Dowd, C., Osborne, S. and Johnson, D. W. 2000. Timescale analysis of marine boundary layer aerosol evolution: Lagrangian case studies under clean and polluted cloudy conditions. T ellus 52B, 423-438.
    • Hoppel, W. A., Fitzgerald, J. A. and Larson, R. E. 1985. Aerosol size distributions in air masses advecting oV the East Coast of the United States. J. Geophys. Res. 90, 2365-2379.
    • Hoppel, W. A., Frick, G. M. and Larson, R. E. 1986. EVect of non-precipitating clouds on the aerosol size distribution in the marine boundary layer. Geophys. Res. L ett. 13, 125-128.
    • Hoppel, W. A., Frick, G. M., Fitzgerald, J. W. and Larson, R. E. 1994. Marine boundary layer measurements of new particle formation and the eVects nonprecipitating clouds have on the aerosol size distributions. J. Geophys. Res. 99, 14443-14459.
    • Hoppel, W. A., Frick, G. M. and Fitzgerald, J. W. 1996. Deducing droplet concentration and supersaturation in marine boundary layer clouds from surface aerosol measurements. J. Geophys. Res. 101, 26553-26565.
    • HuVman, G. J., Adler, R. F., Arkin, P. A., Chang, A., Ferraro, R., Gruber, A., Janowiak, J., McNab, A., Rudolf, B. and Schneider, U. 1997. The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset. Bull. Americ. Meteor. Soc. 78, (1), 5-20.
    • Murphy, D. M., Anderson, J. R., Quinn, P. K., McInnes, L. M., Brechtel, F. J., Kreidenweis, S. M., Middlebrook, A. M., Posfai, M., Thomson, D. S. and Buseck, P. R. 1998. Influence of sea-salt on aerosol radative properties in the Southern Ocean marine boundary layer. Nature 392, 62-65.
    • Neus u¨ß, C., Weise, D., Birmili, W., Wex, H., Wiedensohler, A. and Covert, D. 2000. Size segregated chemical, gravimetric and number distribution derived mass closure of the aerosol in Sagres, Portugal during ACE-2. T ellus 52B, 169-184.
    • O'Dowd, C. D. and Smith, M. 1993. Physicochemical properties of aerosols over the Northeast Atlantic: evidence for wind-speed-related submicron sea-salt aerosol production. J. Geophys. Res. 98, 1137-1149.
    • Porter, J. N. and Clarke, A. D. 1997. Aerosol size distribution models based on in situ measurements. J. Geophys. Res. 102, 6035-6045.
    • Pruppacher, H. R. and Klett, J. D. 1978. Microphysics of clouds and precipitation. D. Reidel Publishing, Dordrecht.
    • Putaud, J.-P., Van Dingenen, R., Mangoni, M., Virkkula, A., Raes, F., Maring, H., Prospero, J. M., Swietlicki, E., Berg, O., Hillamo, R. and Ma¨kela¨, T. 2000. Chemical mass closure and assessment of the origin of the submicron aerosol in the marine boundary layer and the free troposphere at Tenerife during ACE-2. T ellus 52B, 141-168.
    • Raes, F. 1995. Entrainment of free tropospheric aerosols as a regulating mechanism for cloud condensation nuclei in the remote marine boundary layer. J. Geophys. Res. 100, 2893-2903.
    • Raes, F., Van Dingenen, R., Cuevas, E., Van Velthoven, P. F. J. and Prospero, J. M. 1997. Observations of aerosols in the free troposphere and marine boundary layer of the subtropical north east Atlantic: discussion of processes determining their size distribution, J. Geophys. Res. 102, 21315-21328.
    • Raes, F., Bates, T. S., McGovern, F. M., Van Liedekerke, M. 2000. The second Aerosol Characterisation Experiment: general overview and main results. T ellus 52B, 111-126.
    • Seinfeld, J. H. and Pandis, S. N. 1998. Atmospheric chemistry and physics. Wiley, New York.
    • Slinn, W. G. N., Hasse, L., Hicks, B. B., Hogan, A. W., Lai, D., Liss, P. S., Munnich, K. O., Sehmel, G. A. and Vittori, O. 1978. Some aspects of the transfer of atmospheric trace constituents past the air-sea interface. Atmos. Environ. 12, 2055-2087.
    • Van Dingenen, R., Raes, F. and Jensen, N. 1995. Evidence for anthropogenic impact on number concentration and sulfate content of cloud-processed aerosol particles over the North Atlantic. J. Geophys. Res. 100, 21057-21067.
    • Van Dingenen, R., Raes, F., Putaud, J.-P., Virkkula, A. and Mangoni, M. 1999. Processes determining the relationship between aerosol number and non-sea-salt sulfate mass concentrations in the clean and perturbed marine boundary layer. J. Geophys. Res. 104, 8027-8038.
    • Verver, G., Raes, F., Vogelezang, D. and Johnson, D. W. 2000. The second Aerosol Characterisation experiment: meteorological and chemical overview. T ellus 52B, 126-140.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from