LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Harlim, John; Hunt, Brian R. (2007)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article
Subjects:
We present a modified ensemble Kalman filter that allows a non-Gaussian background error distribution. Using a distribution that decays more slowly than a Gaussian allows the filter to make a larger correction to the background state in cases where it deviates significantly from the truth. For high-dimensional systems, this approach can be used locally. We compare this non-Gaussian filter to its Gaussian counterpart (with multiplicative variance inflation) with the three-dimensional Lorenz-63 model, the 40-dimensional Lorenz-96 model, and Molteni’s SPEEDY model, a global model with ∼105 state variables. When observations are sufficiently infrequent and noisy, the non-Gaussian filter yields a significant improvement in analysis and forecast errors.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Anderson, J. L. 2001. An ensemble adjustment Kalman filter for data assimilation. Mon. Weather Rev. 129, 2884-2903.
    • Anderson, J. L. and Anderson, S. L. 1999. A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Weather Rev. 127, 2741-2758.
    • Bishop, C. H., Etherton, B. J. and Majumdar, S. J. 2001. Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Weather Rev. 129, 420-436.
    • Cohn, S. E., da Silva, A., Sienkiewicz, M and Lamich, D. 1998. Assessing the effects of data selection with the DAO physical-space statistical analysis system. Mon. Weather Rev. 126, 2913-2926.
    • Courtier, P., Andersson, E., Heckley, W., Pailleux, J., Vasiljevic, D., Hamrud, M., Hollingsworth, A., Rabier, F. and Fisher, M. 1998. The ECMWF implementation of three-dimensional variational assimilation (3D-Var). I: Formulation. Qtr. J. R. Meteorol. Soc. 124, 1783- 1807.
    • Evensen, G. 1994. Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. 99, 10143-10162.
    • Evensen, G. 2003. The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn. 53, 343-367.
    • Fisher, M. and Courtier, P. 1995. Estimating the covariance matrix of analysis and forecast error in variational data assimilation. ECMWF Tech. Memo. 220.
    • Fletcher, S. J. and Zupanski, M. 2006. A data assimilation method for lognormally distributed observational errors. Quarterly J. R. Meteorol. Soc. 132, 2505-2519.
    • Ghil, M., Cohn, S. E., Tavantzis, J., Bube, K. and Isaacson, E. 1981. Applications of estimation theory to numerical weather prediction. In: Dynamic meteorology: Data assimilation methods, (eds. L. Bengtsson, M. Ghil and E. Ka¨lle´n), Springer-Verlag, New York, 139-224.
    • Hamill, T. M. and Whitaker, J. S. 2005. Accounting for the error due to unresolved scales in ensemble data assimilation: a comparison of different approaches. Mon. Weather Rev. 133, 3132-3147.
    • Houtekamer, P. L. and Mitchell, H. L. 1998. Data assimilation using an ensemble Kalman filter technique. Mon. Weather Rev. 126, 796-811.
    • Houtekamer, P. L. and Mitchell, H. L. 2001. A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Weather Rev. 129, 123-137.
    • Keppenne, C. 2000. Data assimilation into a primitive-equation model with a parallel ensemble Kalman filter. Mon. Weather Rev. 128, 1971- 1981.
    • Lorenc, A. C. 1986. Analysis methods for numerical weather prediction. Quarterly J. R. Meteorol. Soc. 112, 1177-1194.
    • Lorenz, E. N. 1963. Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130-141.
    • Lorenz, E. N. 1996. Predictability: A problem partly solved. In: Proceeding seminar on predictability,Vol. 1, ECMWF, Reading, Berkshire, UK, 1-18.
    • Lorenz, E. N. and Emanuel, K. A. 1998. Optimal sites for supplementary weather observations: simulation with a small model. J. Atm. Sci. 55, 399-414.
    • Mitchell, H. L., Houtekamer, P. L. and Pellerin, G. 2002. Ensemble size, balance, and model-error representation in an ensemble Kalman filter. Mon. Weather Rev. 130, 2791-2808.
    • Molteni, F. 2003. Atmospheric simulations using a GCM with simplified physical parametrizations, I: Model climatology and variability in multi-decadal experiments. Clim. Dyn. 20, 175-191.
    • Nusse, H. E. and Yorke, J. A. 1997. Dynamics: Numerical explorations, Applied Mathematical Sciences 101. Springer-Verlag, New York, 2nd edition, book includes a computer disk with the program “Dynamics”.
    • Ott, E., Hunt, B.R., Szunyogh, I., Zimin, A. V., Kostelich, E. J., Corrazza, M., Kalnay, E., Patil, D. J. and Yorke, J. A. 2004. A local ensemble Kalman filter for atmospheric data assimilation. Tellus 56A, 415- 428.
    • Szunyogh, I., Kostelich, E. J., Gyarmati, G., Patil, D. J., Hunt, B. R., Kalnay, E., Ott, E. and Yorke, J. A. 2005. Assessing a local ensemble Kalman filter: perfect model experiments with the National Centers for Environmental Prediction global model. Tellus 57A, 528- 545.
    • Tippett, M. K., Anderson, J. L., Bishop, C. H., Hamill, T. M. and Whitaker, J. S. 2003. Ensemble square-roots filters. Mon. Weather Rev. 131, 1485-1490.
    • van Leeuwen, P. J. 1999. Comment on “Data assimilation using an ensemble Kalman filter technique”. Mon. Weather Rev. 127, 1374-1377.
    • Wang, X., Bishop, C. H. and Julier, S. J. 2004. Which is better, an ensemble of positive-negative pairs or a centered spherical simplex ensemble? Mon. Weather Rev. 132, 1590-1605.
    • Whitaker, J. S. and Hamill, T. M. 2002. Ensemble data assimilation without perturbed observations. Mon. Weather Rev. 130, 1913-1924.
    • Zupanski, M. 2005. Maximum likelihood ensemble filter: Theoretical aspects. Mon. Weather Rev. 133, 1710-1726.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • NSF | Collaborative Research: MSP...
  • NSF | Applications of Nonlinear D...

Cite this article

Collected from