- Bates, J. R. and McDonald, A. 1982. Multiply upstream, semiLagrangian advective schemes: analysis and application to a multilevel primitive equation model. Mon. Wea. Rev. 110, 1831-1842.
- Bates, J. R., Moorthi, S. and Higgins, R. W. 1993. A global multilevel atmospheric model using a vector semi-Lagrangian finite-difference scheme. Part I: adiabatic formulation. Mon. Wea. Rev. 121, 244-263.
- Benard, P., 2003. Stability of semi-implicit and iterative centeredimplicit time discretization for various equation systems used in NWP. Mon. Wea. Rev. 131, 2479-2491.
- Benard, P., 2004. On the use of a wider class of linear systems for the design of constant-coefficient semi-implicit time schemes in NWP. Mon. Wea. Rev. 132, 1319-1324.
- Benoit, R., Desgagne´, M., Pellerin, P., Chartier, Y. and Desjardins, S. 1997. The Canadian MC2: A Semi-Lagrangian, Semi-Implicit Wideband Atmospheric Model Suited for Finescale Process Studies and Simulation. Mon. Wea. Rev. 125, 2382-2415.
- Bubnova, R., Hello, G., Bernard, P. and Geleyn, J.-F. 1995. Integration of the fully elastic equations cast in the hydrostatic pressure terrainfollowing coordinate in the framework of APREGE/Aladin NWP system. Mon. Wea. Rev. 123, 515-535.
- Coˆte´, J. and Staniforth, A. 1988. A two-time-level semi-Lagrangian semi-implicit scheme for spectral models. Mon. Wea. Rev. 116, 2003- 2012.
- Davies, H. C. 1976. A lateral boundary formulation for multilevel prediction models. Q. J. R. Meteorol. Soc. 102, 405-418.
- Girard, C., Benoit, R. and Desgagne´, M. 2005. Finescale Topography and the MC2 Dynamics Kernel. Mon. Wea. Rev. 133, 1463-1477.
- Golding, B. W. 1992. An efficient non-hydrostatic forecast model. Meteorol. Atmos. Phys. 50, 89-103.
- Leslie, L. M. and Purser, R. J., 1991. High-order numerics in an unstaggered three-dimensional time-split semi-Lagrangian forecast model. Mon. Wea. Rev. 119, 1612-1623.
- Ma¨nnik, A. 2003. Implementation and validation of the non-hydrostatic numerical weather prediction model HIRLAM. Dissertationes Geophysicales Tartu University Press. 86 p.
- Ma¨nnik, A. and Ro˜o˜m, R. 2001. Non-hydrostatic adiabatic kernel for HIRLAM. Part II. Anelastic, hybrid-coordinate, explicitEulerian model. HIRLAM Technical Report 49, 54 p. Available from http://hirlam.org/open/publications/TechReports/TR49.pdf Ma¨nnik, A., Ro˜o˜m, R. and Luhamaa, A. 2003. Nonhydrostatic generalization of a pressure-coordinate-based hydrostatic model with implementation in HIRLAM: validation of adiabatic core. Tellus 55A, 219-231.
- McDonald, A. 1986. A semi-Lagrangian and semi-implicit two time level integration scheme. Mon. Wea. Rev. 114, 824-830.
- McDonald, A. 1995. The HIRLAM two time level, three dimensional semi-Lagrangian, semi-implicit, limited area, gridpoint model of the primitive equations. HIRLAM Technical Report 17, Norrko¨ping, 1995, 25 pp.
- McDonald, A. 1998. Alternative extrapolations to find the departure point in a 'two time level' semi-Lagrangian integration. HIRLAM Technical Report No 34. Publisher: HIRLAM 4 Project, c/o Met E´ ireann, Glasnevi Hill, Dublin 9, Ireland. 17 pp. Available from the HIRLAM member institutes.
- McDonald, A., 1999. An examination of alternative extrapolations to find the departure point position in a 'two-time-level' semi-Lagrangian integration. Mon. Wea. Rev. 127, 1985-1993.
- McDonald, A. and Bates, J. R. 1989. Semi-Lagrangian integration of a grid-point shallow-water model on the sphere. Mon. Wea. Rev. 117, 130-137.
- McDonald, A. and Haugen, J.-E. 1992. A two-time-level, threedimensional, semi-Lagrangian, semi-implicit, limited-area gridpoint model of the primitive equations. Mon. Wea. Rev. 120, 2603-2621.
- McDonald, A. and Haugen, J.-E. 1993. A two-time-level, threedimensional, semi-Lagrangian, semi-implicit, limited-area gridpoint model of the primitive equations. Part II: extension to hybrid vertical coordinates. Mon. Wea. Rev. 121, 2077-2087.
- Miller, M. J. 1974. On the use of pressure as vertical co-ordinate in modelling convection. Q. J. R. Meteorol. Soc. 100, 155-162.
- Miller, M. J. and Pearce, R. P. 1974. A three-dimensional primitive equation model of cumulonimbus convection. Q. J. R. Meteorol. Soc. 100, 133-154.
- Miller, M. J. and White, A. A. 1984. On the nonhydrostatic equations in pressure and sigma coordinates. Q. J. R. Meteorol. Soc. 110, 515- 533.
- Purser, R. J. and Leslie, L. M. 1988. A semi-implicit semi-Lagrangian finite-difference scheme using high-order spatial differencing on a nonstaggered grid. Mon. Wea. Rev. 116, 2069-2080.
- Ritchie, H. and Tanguay, M. 1996. A comparison of spatially averaged Eulerian and Semi-Lagrangian treatments of mountains. Mon. Wea. Rev. 124, 167-181.
- Ritchie, H., Temperton, C., Simmons, A., Hortal, M., Davies, T. and co-authors. 1995. Implementation of the Semi-Lagrangian method in a high-resolution version of the ECMWF forecast model. Mon. Wea. Rev. 123, 489-514.
- Robert, A. J. 1969. The integration of a spectral model of the atmosphere by the implicit method. Proc. WMO-IUGG Symposium on NWP, Tokyo, Japan Meteorological Agency, VII, 19-24.
- Robert, A. 1981. A stable numerical integration scheme for the primitive meteorological equations. Atmos. Ocean 19, 35-46.
- Robert, A. 1982. A semi-Lagrangian and semi-implicit numerical integration scheme for the primitive meteorological equations. J. Meteor. Soc. Japan 60, 319-325.
- Robert, A., Henderson, J. and Thurnbull, C. 1972. An implicit time integration scheme for baroclinic models of the atmosphere. Mon. Wea. Rev. 100, 329-335.
- Robert, A., Yee, T. L. and H. Richie, H. 1985. A semi-Lagrangian and semi-implicit integration scheme for multi-level atmospheric models. Mon. Wea. Rev. 113, 388-394.
- Ro˜o˜m, R. 1990. General form of the equations of atmospheric dynamics in isobaric coordinates. Izvestiya, Atmospheric and Oceanic Physics 26, 9-14.
- Ro˜ o˜m, R. 2001. Nonhydrostatic adiabatic kernel for HIRLAM. Part I: fundametals of nonhydrostatic dynamics in pressure-related coordinates. HIRLAM Technical Report 48, 26 p. Available from http://hirlam.org/open/publications/TechReports/TR48.pdf Ro˜ o˜m, R. and Ma¨nnik, A. 1999. Response of different nonhydrostatic, pressure-coordinate models to orographic forcing. J. Atmos. Sci. 56, 2553-2570.
- Ro˜ o˜m, R. and Ma¨nnik, A. 2002. Nonhydrostatic adiabatic kernel for HIRLAM. Part III: semi-implicit Eulerian scheme. HIRLAM Technical Report 55, 29 p. Available from http://hirlam.org/open/ publications/TechReports/ TR55.pdf
- Ro˜ o˜m, R., Ma¨nnik, A. and Luhamaa, A. 2006. Nonhydrostatic adiabatic kernel for HIRLAM. Part IV: semi-implicit Semi-Lagrangian scheme. HIRLAM Technical Report 65, 43 p. Available from http://hirlam.org/ open/publications/TechReports/TR65.pdf
- Simmons, A. J. and Burridge, D. M. 1981. An energy and angular momentum conserving vertical finite difference scheme and hybrid vertical coordinates. Mon. Wea. Rev. 109, 758-766.
- Tanguay, M., Simard, A. and Staniforth, A. 1989. A three-dimensional semi-Lagrangian scheme for the Canadian regional finite-element forecast model. Mon. Wea. Rev. 117, 1861-1871.
- Tanguay, M., Robert, A. and Laprise, R. 1990. A semi-implicit semiLagrangian fully compressible regional model. Mon. Wea. Rev. 118, 1970-1980.
- Temperton, C. and Staniforth, A. 1987. An efficient two-time-level semiLagrangian semi-implicit integration scheme. Q. J. R. Meteorol. Soc. 113, 1025-1039.
- Unde´n, P., Rontu, L., Ja¨rvinen, H., Lynch, P., Calvo, and co-authors. 2002. HIRLAM-5 Scientific Documentation, HIRLAM-5 Project, c/o Per Unde´n SMHI, S-601 76 Norrko¨ping, SWEDEN, 144 p. Available from http://hirlam.org/open/publications/SciDoc Dec2002.pdf White, A. A. 1989. An extended version of nonhydrostatic, pressure coordinate model. Q. J. R. Meteorol. Soc. 115, 1243-1251.