You have just completed your registration at OpenAire.
Before you can login to the site, you will need to activate your account.
An e-mail will be sent to you with the proper instructions.
Important!
Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version
of the site upon release.
Two-time-level, semi-implicit, semi-Lagrangian (SISL) scheme is applied to the non-hydrostatic pressure coordinate equations, constituting a modified Miller–Pearce–White model, in hybrid-coordinate framework. Neutral background is subtracted in the initial continuous dynamics, yielding modified equations for geopotential, temperature and logarithmic surface pressure fluctuation. Implicit Lagrangian marching formulae for single time-step are derived. A disclosure scheme is presented, which results in an uncoupled diagnostic system, consisting of 3-D Poisson equation for omega velocity and 2-D Helmholtz equation for logarithmic pressure fluctuation. The model is discretized to create a non-hydrostatic extension to numerical weather prediction model HIRLAM. The discretization schemes, trajectory computation algorithms and interpolation routines, as well as the physical parametrization package are maintained from parent hydrostatic HIRLAM. For stability investigation, the derived SISL model is linearized with respect to the initial, thermally non-equilibrium resting state. Explicit residuals of the linear model prove to be sensitive to the relative departures of temperature and static stability from the reference state. Relayed on the stability study, the semi-implicit term in the vertical momentum equation is replaced to the implicit term, which results in stability increase of the model.
Bates, J. R. and McDonald, A. 1982. Multiply upstream, semiLagrangian advective schemes: analysis and application to a multilevel primitive equation model. Mon. Wea. Rev. 110, 1831-1842.
Bates, J. R., Moorthi, S. and Higgins, R. W. 1993. A global multilevel atmospheric model using a vector semi-Lagrangian finite-difference scheme. Part I: adiabatic formulation. Mon. Wea. Rev. 121, 244-263.
Benard, P., 2004. On the use of a wider class of linear systems for the design of constant-coefficient semi-implicit time schemes in NWP. Mon. Wea. Rev. 132, 1319-1324.
Benoit, R., Desgagne´, M., Pellerin, P., Chartier, Y. and Desjardins, S. 1997. The Canadian MC2: A Semi-Lagrangian, Semi-Implicit Wideband Atmospheric Model Suited for Finescale Process Studies and Simulation. Mon. Wea. Rev. 125, 2382-2415.
Bubnova, R., Hello, G., Bernard, P. and Geleyn, J.-F. 1995. Integration of the fully elastic equations cast in the hydrostatic pressure terrainfollowing coordinate in the framework of APREGE/Aladin NWP system. Mon. Wea. Rev. 123, 515-535.
Coˆte´, J. and Staniforth, A. 1988. A two-time-level semi-Lagrangian semi-implicit scheme for spectral models. Mon. Wea. Rev. 116, 2003- 2012.
Davies, H. C. 1976. A lateral boundary formulation for multilevel prediction models. Q. J. R. Meteorol. Soc. 102, 405-418.
Girard, C., Benoit, R. and Desgagne´, M. 2005. Finescale Topography and the MC2 Dynamics Kernel. Mon. Wea. Rev. 133, 1463-1477.
Golding, B. W. 1992. An efficient non-hydrostatic forecast model. Meteorol. Atmos. Phys. 50, 89-103.
Leslie, L. M. and Purser, R. J., 1991. High-order numerics in an unstaggered three-dimensional time-split semi-Lagrangian forecast model. Mon. Wea. Rev. 119, 1612-1623.
Ma¨nnik, A. 2003. Implementation and validation of the non-hydrostatic numerical weather prediction model HIRLAM. Dissertationes Geophysicales Tartu University Press. 86 p.
Ma¨nnik, A. and Ro˜o˜m, R. 2001. Non-hydrostatic adiabatic kernel for HIRLAM. Part II. Anelastic, hybrid-coordinate, explicitEulerian model. HIRLAM Technical Report 49, 54 p. Available from http://hirlam.org/open/publications/TechReports/TR49.pdf Ma¨nnik, A., Ro˜o˜m, R. and Luhamaa, A. 2003. Nonhydrostatic generalization of a pressure-coordinate-based hydrostatic model with implementation in HIRLAM: validation of adiabatic core. Tellus 55A, 219-231.
McDonald, A. 1986. A semi-Lagrangian and semi-implicit two time level integration scheme. Mon. Wea. Rev. 114, 824-830.
McDonald, A. 1995. The HIRLAM two time level, three dimensional semi-Lagrangian, semi-implicit, limited area, gridpoint model of the primitive equations. HIRLAM Technical Report 17, Norrko¨ping, 1995, 25 pp.
McDonald, A. 1998. Alternative extrapolations to find the departure point in a 'two time level' semi-Lagrangian integration. HIRLAM Technical Report No 34. Publisher: HIRLAM 4 Project, c/o Met E´ ireann, Glasnevi Hill, Dublin 9, Ireland. 17 pp. Available from the HIRLAM member institutes.
McDonald, A., 1999. An examination of alternative extrapolations to find the departure point position in a 'two-time-level' semi-Lagrangian integration. Mon. Wea. Rev. 127, 1985-1993.
McDonald, A. and Bates, J. R. 1989. Semi-Lagrangian integration of a grid-point shallow-water model on the sphere. Mon. Wea. Rev. 117, 130-137.
McDonald, A. and Haugen, J.-E. 1992. A two-time-level, threedimensional, semi-Lagrangian, semi-implicit, limited-area gridpoint model of the primitive equations. Mon. Wea. Rev. 120, 2603-2621.
McDonald, A. and Haugen, J.-E. 1993. A two-time-level, threedimensional, semi-Lagrangian, semi-implicit, limited-area gridpoint model of the primitive equations. Part II: extension to hybrid vertical coordinates. Mon. Wea. Rev. 121, 2077-2087.
Miller, M. J. 1974. On the use of pressure as vertical co-ordinate in modelling convection. Q. J. R. Meteorol. Soc. 100, 155-162.
Miller, M. J. and Pearce, R. P. 1974. A three-dimensional primitive equation model of cumulonimbus convection. Q. J. R. Meteorol. Soc. 100, 133-154.
Miller, M. J. and White, A. A. 1984. On the nonhydrostatic equations in pressure and sigma coordinates. Q. J. R. Meteorol. Soc. 110, 515- 533.
Purser, R. J. and Leslie, L. M. 1988. A semi-implicit semi-Lagrangian finite-difference scheme using high-order spatial differencing on a nonstaggered grid. Mon. Wea. Rev. 116, 2069-2080.
Ritchie, H., Temperton, C., Simmons, A., Hortal, M., Davies, T. and co-authors. 1995. Implementation of the Semi-Lagrangian method in a high-resolution version of the ECMWF forecast model. Mon. Wea. Rev. 123, 489-514.
Robert, A. J. 1969. The integration of a spectral model of the atmosphere by the implicit method. Proc. WMO-IUGG Symposium on NWP, Tokyo, Japan Meteorological Agency, VII, 19-24.
Robert, A. 1981. A stable numerical integration scheme for the primitive meteorological equations. Atmos. Ocean 19, 35-46.
Robert, A. 1982. A semi-Lagrangian and semi-implicit numerical integration scheme for the primitive meteorological equations. J. Meteor. Soc. Japan 60, 319-325.
Robert, A., Henderson, J. and Thurnbull, C. 1972. An implicit time integration scheme for baroclinic models of the atmosphere. Mon. Wea. Rev. 100, 329-335.
Robert, A., Yee, T. L. and H. Richie, H. 1985. A semi-Lagrangian and semi-implicit integration scheme for multi-level atmospheric models. Mon. Wea. Rev. 113, 388-394.
Ro˜o˜m, R. 1990. General form of the equations of atmospheric dynamics in isobaric coordinates. Izvestiya, Atmospheric and Oceanic Physics 26, 9-14.
Ro˜ o˜m, R. 2001. Nonhydrostatic adiabatic kernel for HIRLAM. Part I: fundametals of nonhydrostatic dynamics in pressure-related coordinates. HIRLAM Technical Report 48, 26 p. Available from http://hirlam.org/open/publications/TechReports/TR48.pdf Ro˜ o˜m, R. and Ma¨nnik, A. 1999. Response of different nonhydrostatic, pressure-coordinate models to orographic forcing. J. Atmos. Sci. 56, 2553-2570.
Ro˜ o˜m, R. and Ma¨nnik, A. 2002. Nonhydrostatic adiabatic kernel for HIRLAM. Part III: semi-implicit Eulerian scheme. HIRLAM Technical Report 55, 29 p. Available from http://hirlam.org/open/ publications/TechReports/ TR55.pdf
Ro˜ o˜m, R., Ma¨nnik, A. and Luhamaa, A. 2006. Nonhydrostatic adiabatic kernel for HIRLAM. Part IV: semi-implicit Semi-Lagrangian scheme. HIRLAM Technical Report 65, 43 p. Available from http://hirlam.org/ open/publications/TechReports/TR65.pdf
Simmons, A. J. and Burridge, D. M. 1981. An energy and angular momentum conserving vertical finite difference scheme and hybrid vertical coordinates. Mon. Wea. Rev. 109, 758-766.
Tanguay, M., Simard, A. and Staniforth, A. 1989. A three-dimensional semi-Lagrangian scheme for the Canadian regional finite-element forecast model. Mon. Wea. Rev. 117, 1861-1871.
Tanguay, M., Robert, A. and Laprise, R. 1990. A semi-implicit semiLagrangian fully compressible regional model. Mon. Wea. Rev. 118, 1970-1980.
Temperton, C. and Staniforth, A. 1987. An efficient two-time-level semiLagrangian semi-implicit integration scheme. Q. J. R. Meteorol. Soc. 113, 1025-1039.
Unde´n, P., Rontu, L., Ja¨rvinen, H., Lynch, P., Calvo, and co-authors. 2002. HIRLAM-5 Scientific Documentation, HIRLAM-5 Project, c/o Per Unde´n SMHI, S-601 76 Norrko¨ping, SWEDEN, 144 p. Available from http://hirlam.org/open/publications/SciDoc Dec2002.pdf White, A. A. 1989. An extended version of nonhydrostatic, pressure coordinate model. Q. J. R. Meteorol. Soc. 115, 1243-1251.