Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
The long-term co-evolution of the geosphere–biospere complex from the Proterozoic up to 1.5 billion years into the planet's future is investigated using a conceptual earth system model including the basic geodynamic processes. The model focusses on the global carbon cycle as mediated by life and driven by increasing solar luminosity and plate tectonics. The main CO2 sink, the weathering of silicates, is calculated as a function of biologic activity, global run-off and continental growth. The main CO2 source, tectonic processes dominated by sea-floor spreading, is determined using a novel semi-empirical scheme. Thus, a geodynamic extension of previous geostatic approaches can be achieved. As a major result of extensive numerical investigations, the “terrestrial life corridor”, i.e., the biogeophysical domain supporting a photosynthesis-based ecosphere in the planetary past and in the future, can be identified. Our findings imply, in particular, that the remaining life-span of the biosphere is considerably shorter (by a few hundred million years) than the value computed with geostatic models by other groups. The “habitable-zone concept” is also revisited, revealing the band of orbital distances from the sun warranting earth-like conditions. It turns out that this habitable zone collapses completely in some 1.4 billion years from now as a consequence of geodynamics.DOI: 10.1034/j.1600-0889.2000.00898.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Armstrong, R. L. 1981. The persistent myth of the crustal growth. Aust. J. Earth Sci. 38, 613-630.
    • Berner, R. A. 1991. A model for atmospheric CO2 over Phanerozoic time. Am. J. Sci. 291, 339-376.
    • Berner, R. A. 1992. Weathering, plants, and long-term carbon cycle. Geochim. Cosmochim. Acta 56, 3225-3231.
    • Berner, R. A., Lasaga, A. C. and Garrels, R. M. 1983. The carbonate-silicate geochemical cycle and its eVects on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 283, 641-683.
    • Bugbee, B. G. and Salisbury, F. B. 1986. Studies on maximum yield of wheat for the controlled environments of space. In: Controlled ecological life support systems: CEL SS 1985 Workshop, ed. R. D. MacElroy, N. Y. Martello, D. T. SmernoV. NASA-TM-88215, National Aeronautics and Space Administration, Washington DC, pp. 447-486.
    • Caldeira, K. 1991. Continental-pelagic carbonate partitioning and the global carbonate-silicate cycle. Geology 19, 204-206.
    • Caldeira, K. 1992. Enhanced cenozoic chemical weathering and the subduction of pelagic carbonate. Nature 357, 578-581.
    • Caldeira, K. 1995. Long-term control of atmospheric carbon dioxide - low-temperature seafloor alteration or terrestrial silicate-rock weathering. Am. J. Sci. 295, 1077-1114.
    • Caldeira, K. and Kasting, J. F. 1992. The life span of the biosphere revisited. Nature 360, 721-723.
    • Condie, K. C. 1990. Growth and accretion of continental crust: inferences based on Laurentia. Chem. Geology 83, 183-194.
    • Forget, F. and Pierrehumbert, R.T. 1997. Warming early Mars with carbon dioxide clouds that scatter infrared radiation. Science 278, 1273-1276.
    • Franck, S. 1998. Evolution of the global heat flow over 4.6 Gyr. T ectonophysics 291, 9-18.
    • Franck, S. and Bounama, Ch. 1995. EVects of waterdependent creep rate on the volatile exchange between mantle and surface reservoirs. Phys. Earth Planet. Inter. 92, 57-65.
    • Franck, S. and Bounama, Ch. 1997. Continental growth and volatile exchange during Earth's evolution. Phys. Earth Planet. Inter. 100, 189-196.
    • Franck, S., Kossacki, K. and Bounama, Ch. 1999. Modelling the global carbon cycle for the past and future evolution of the Earth system. Chem. Geology 159, 305-317.
    • Fyfe, W. D. 1978. Evolution of the earth's crust: modern plate tectonics to ancient hot spot tectonics? Chem. Geol. 23, 89-114. Ganopolski, A., Kubatzki, C., Claussen, M., Brovkin, V. and Petoukhov, V. 1998. Vegetation-atmosphere-ocean interaction on climate during Mid-Holocene. Science 280, 1916-1919.
    • Godde´ris, Y. and Francois, L. M. 1995. The cenozoic evolution of the strontium and carbon cycle: relative importance of continental erosion and mantle exchanges. Chem. Geology 126, 169-190.
    • Hart, M. H. 1978. The evolution of the atmosphere of the Earth. Icarus 33, 23-39.
    • Hart, M. H. 1979. Habitable zones about main sequence stars. Icarus 37, 351-357.
    • Jackson, M. J. and Pollack, H. N. 1987. Mantle devolatilization and convection: implications for the thermal history of the Earth. Geophys. Res. L ett. 14, 7, 737-740.
    • Kasting, J. F. 1984. Comments on the BLAG model: the carbonate-silicate geochemical cycle and its eVect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 284, 1175-1182.
    • Kasting, J. F. 1992. T he proterozoic biosphere. Schopf, J. W., Klein, C. (eds.). Cambridge University Press, Cambridge, pp. 165-168.
    • Kasting, J. F. 1997. Habitable zones around low mass stars and the search for extraterrestrial life. Origins of L ife 27, 291-307.
    • Kasting, J. F., Toon, O. B. and Pollack, J. B. 1988. How climate evolved on the terrestrial planets. Sci. Am. 258,2, 46-53.
    • Kasting, J. F., Whitmire, D. P. and Reynolds, R. T. 1993. Habitable zones around main sequence stars. Icarus 101, 108-128.
    • Krumbein, W. E. 1995. A neglected carbon sink? Biodegradation of rocks. In: Microbial diversity and ecosystem function. Allsopp, D., Colwell, R. R. and Hawksworth, D. L. (eds.). CAB International, Wallingford.
    • Kuhn, W. R., Walker, J. C. G. and Marshall, H. G. 1989 The eVect on Earth's surface temperature from variations in rotation rate, continent formation, solar luminosity, and carbon dioxide. J. Geophys. Res. 94, 11,129-11,136.
    • Kump, L. R. and Volk, T. 1991. Gaia's garden and BLAG's greenhouse: global biogeochemical climate regulation. In: Scientists on Gaia, ed. S. H. Schneider and P. J. Boston. MIT Press, Cambridge, 191-199.
    • Lasaga, A. C., Berner, R. A. and Garrels, R. M. 1985. An improved geochemical model of atmospheric CO2 fluctuation over the past 100 million years. In: The carbon cycle and atmospheric CO2: natural variations Archaean to present. Geophys. Monograph 32, ed. E. T. Sundquist and W. S. Broecker. AGU, Washington DC, pp. 397-441.
    • Lovelock, J. E. and Whitfield, M. 1982. Life span of biosphere. Nature 296, 561-563.
    • Marshall, H. G., Walker, J. C. G, and Kuhn, W. R. 1988. Long-term climate change and the geochemical cycle of carbon. J. Geophys. Res. 93, 781-801.
    • McGovern, P. J. and Schubert, G. 1989. Thermal evolution of the Earth: eVects of volatile exchange between atmosphere and interior. Earth Planet. Sci. L ett. 96, 27-37.
    • Nisbet, E. G. 1987.T he young Earth: an introduction to Archean geology. Allen & Unwin Inc., London, pp. 402.
    • Reymer, A. and Schubert, G. 1984. Phanerozoic addition rates of the continental crust and crustal growth. T ectonics 3, 63-67.
    • Richter, O. 1985. Simulation des Verhaltens o¨kologischer Systeme: Mathematische Methoden und Modelle. Verlag Chemie, Weinheim, pp. 219.
    • Sagan, C. and Mullen, G. 1972. Earth and Mars: evolution of atmospheres and surface temperatures. Science 177, 52-56.
    • Schellnhuber, H.-J. and Kropp, J. 1998. Geocybernetics: controlling a complex dynamic system under uncertainty. Naturwissenschaften 85, 411-425.
    • Schneider, S. H. and Boston, P. J. (eds.) 1991. Scientists on Gaia. MIT Press, Cambridge, pp. 550.
    • Schwartzman, D., McMenamin, M. and Volk, T. 1993. Did surface temperatures constrain microbial evolution? BioSci. 43, 390-393.
    • Schwartzman, D. W. and Volk, T. 1989. Biotic enhancement of weathering and the habitability of earth. Nature 340, 457-460.
    • Stumm, W. and Morgan, J. J. 1981. Aquatic chemistry. Wiley, New York, 780 pp.
    • Sylvester, P. J., Campbell, I. H. and Bowyer, D. A. 1997. Niobium/uranium evidence for early formation of the continental crust. Science 275, 521-523.
    • Taylor, S. R. and McLennan, S. M. 1995. The geological evolution of the continental crust. Rev. Geophysics 33, 641-265.
    • Turcotte, D. L. and Schubert, G. 1982. Geodynamics. Wiley, New York, 450 pp.
    • Volk, T. 1987. Feedbacks between weathering and atmospheric CO2 over the last 100 million years. Am. J. Sci. 287, 763-779.
    • Volk, T. 1989. Sensitivity of climate and atmospheric CO2 deep-ocean and shallow-ocean carbonate burial. Nature 337, 637-640.
    • Von Bloh, W., Block, A. and Schellnhuber, H.-J. 1997. Self-stabilisation of the biosphere under global change: a tutorial geophysiological approach. T ellus 49B, 249-262.
    • Walker, J. C. G., Hays, P. B. and Kasting, J. F. 1981. A negative feedback mechanism for the long-term stabilization of Earth's surface temperature. J. Geophys, Res. 86, 9776-9782.
    • Watson, A. J. and Lovelock, J. E. 1983. Biological homeostasis of the global environment: the parable of Daisyworld. T ellus 35B, 284-289.
    • Williams, D. M. 1998. T he stability of habitable planetary environments. Thesis, Pennsylvania State University.
    • Williams, D. M. and Kasting, J. F. 1997. Habitable planets with high obliquities. Icarus 129, 254-267.
    • Williams, D. R. and Pan, V. 1992. Internally heated mantle convection and the thermal and degassing history of the Earth. J. Geophys. Res. 97, B6, 8937-8950.
    • Wolery, T. J. and Sleep, N. H. 1976. Hydrothermal circulation and geochemical flux at mid-ocean ridges. J. Geol. 84, 249-275.
    • Wolery, T. J. and Sleep, N. H. 1988. Interactions of geochemical cycles with the mantle. In: Chemical cycles in the evolution of the earth, eds. C. B. Gregor, R. M. Garrels, F. T. Mackenzie, J. B. Maynard. Wiley & Sons, New York, pp. 77-103.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from